
Rehwaldt, Nico
Exploring Run-time Behavior in Reversible Experiments

Exploring Run-time Behavior in
Reversible Experiments

An Application of Worlds for Debugging

by

Nico Rehwaldt

A thesis submitted to the
Hasso-Plattner-Institute for Software Systems Engineering

at the University of Potsdam, Germany
in partial fulfillment of the requirements for the degree of

Master of Science in Software Engineering

Supervisors

Prof. Dr. Robert Hirschfeld
Bastian Steinert

Software Architecture Group
Hasso-Plattner-Institute

University of Potsdam, Germany

July 30, 2012

Abstract

Debuggers are often used to inspect running software systems in order to
support the understanding of source code. They differ substantially from
most tools that visualize run-time data as they make it possible to keep track
of a running program as it executes. Thereby they encourage learning through
experience. At the same time, conventional debuggers do not properly support
incremental understanding. The reason is that they offer only limited options
to safely re-explore a particular run-time behavior without restarting the
program under observation.

Against that background, this work examines Worlds [44]—a language
extension that allows for scoping of side effects in imperative programming
languages. The thesis evaluates the concept of Worlds to isolate side effects
caused during debugging. By doing so, the effects of prior explorations can be
discarded and the examination of run-time behavior gets safe to be repeated
until it yields the desired knowledge gain.

In the course of this work, we present the principle application of Worlds
to enable debugging in reversible experiments. Furthermore, we propose a
general purpose Worlds mechanism for Squeak/Smalltalk, which is necessary
to evaluate the practical application of the concept for Smalltalk. In the course
of the evaluation, we present a debugger that employs the mechanism to
realize the safe re-examination of behavior inside a debugging session.

v

Zusammenfassung

Debugger ermöglichen es das Laufzeitverhalten eines Programms zu inspizie-
ren und tragen damit mittelbar zum besseren Verständnis des zugrundeliegen-
den Quellcodes bei. Sie unterscheiden sich dabei grundsätzlich von anderen
Werkzeugen die das Programmverstehen unterstützen, da sie es ermöglichen
eine Programmausführung kontrolliert zu durchlaufen. Dadurch stärken sie
das Verständnis von Programmen an Hand von Beispielen. Andererseits ist es
schwierig, Programmverhalten mit Hilfe von Debuggern schrittweise zu ver-
stehen, da konventionelle Debugger nur eingeschränkte Möglichkeiten bieten,
lokal auftretendes Verhalten wiederholt zu betrachten.

Vor diesem Hintergrund betrachtet die vorliegende Arbeit Worlds [44], eine
Erweiterung für objektorientierte Programmiersprachen die es ermöglicht,
während der Programausführung auftretende Seiteneffekte zu kontrollieren.
Im Rahmen von Debugging eingesetzt, erlaubt es Worlds die Effekte, die
durch das Betrachten von Programmverhalten entstehen, einzufangen und zu
verwerfen. Das ermöglicht eine wiederholte Ausführung von Programmteilen
bis der zugrundeliegende Quellcode vollständig verstanden wurde.

Diese Arbeit stellt die prinzipielle Anwendung von Worlds im Rahmen
von Debugging vor. Weiterhin präsentiert sie einen allgemein anwendbaren
Worlds-Mechanismus für Squeak/Smalltalk, der es ermöglicht, die Anwen-
dung von Worlds im Rahmen von Debugging praktisch zu erproben. Im
Zuge der Evaluierung beschreibt sie einen Debugger, der die sichere Wieder-
ausführung von Laufzeitverhalten basierend auf dem Standarddebugger für
Squeak/Smalltalk und dem vorgestellten Worlds-Mechanismus ermöglicht.

vii

Acknowledgments

First of all, I thank my girlfriend, Juliane for the thought experi-
ments we conducted in the time I wrote this thesis. While these
experiments helped me tremendously to grasp the full power of
Worlds, I am thankful that all of them were properly isolated and
left both, our apartment walls and our fridge, in an acceptable
state.

Further, I would like to thank my supervisors Prof. Dr. Robert
Hirschfeld and Bastian Steinert for the fruitful talks we had in the
course of finding, evolving and finishing this thesis. I continue to
appreciate their honest feedback and criticism and hope that some
of their advices led to improvements in this work.

Thank is due to my family, too, which showed great interest in
the thesis progress and kept my motivation up. I especially value
Jan’s efforts to read through this work to point out a seemingly
endless number of small issues and to identify bigger rooms for
improvements.

Finally, I would like to thank a whole bunch of other people for
commenting on this thesis and making writing it enjoyable, first
and foremost Tobias with his type setting tricks, the room C-E.4
folks and the Sweden crew.

ix

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Thesis in a Nutshell . 2

1.3. Outline . 3

2. Background 5
2.1. Program Comprehension . 5

2.1.1. Comprehension Models 6

2.1.2. Supporting Expert Developers 6

2.2. Running Programs as Sources of Insights 7

2.2.1. Dynamic Views in the IDE 7

2.2.2. Collecting Run-time Data 8

2.2.3. Online vs. Postmortem . 8

2.3. Debugging . 8

2.3.1. Debuggers as Dynamic Views 9

2.3.2. Supporting Program Exploration 10

2.4. A Light-weight Approach to Safe Experimentation 12

3. Experimenting with Worlds 15
3.1. Worlds in Brief . 15

3.1.1. Goals and Applications 16

3.1.2. Underlying Concepts . 16

3.1.3. Look and Feel . 19

3.1.4. Inner Workings of Worlds for Smalltalk 21

3.2. Aiding Exploration . 22

3.2.1. Experimentation Model 23

3.2.2. Example Scenarios . 26

3.3. Practical Limitations . 30

3.4. Towards a General Purpose Worlds 32

3.4.1. Generic Worlds Dispatch 32

3.4.2. Tool Support . 33

xi

Contents

3.4.3. Support for GUI Applications 36

3.4.4. Summing up . 39

4. A General Purpose Worlds 41
4.1. Worlds Dispatch . 41

4.1.1. Object State in Smalltalk 42

4.1.2. Dispatching State Access 42

4.2. Coexistence of In-Worlds and Normal Behavior 44

4.2.1. The DWorlds Compiler . 44

4.2.2. Customizing In-Worlds Behavior 47

4.3. Core Implementation . 49

4.3.1. Architecture . 49

4.3.2. Change Model . 50

4.4. Spatial Scoping . 51

4.4.1. Method Wrappers to the Rescue 52

4.4.2. Reconstituting Explicit Scoping 53

4.4.3. Re-enabling Local Experiments 55

5. Evaluation and Discussion 59
5.1. DWorlds as a General Purpose Mechanism 59

5.1.1. Generic Worlds Dispatch 59

5.1.2. Tool Support . 61

5.1.3. Experimenting with Morphic 62

5.1.4. Limitations . 63

5.2. Reversible Experiments Using DWorlds 64

5.2.1. The dwdbg Debugger Extension 64

5.2.2. Local and Global Explorations 65

5.2.3. Discussion . 68

5.2.4. Limitations . 70

5.3. Open Topics and Future Work 70

5.3.1. On DWorlds . 70

5.3.2. On the dwdbg . 71

6. Related Work 73
6.1. Debugging . 73

6.2. Encapsulating Change . 75

6.3. Perspectives and Spatial Scoping 76

xii

Contents

7. Conclusion and Outlook 79
7.1. Summary of Contributions . 79

7.2. Outlook . 80

A. Additional Code Examples and Illustrations 87
A.1. State Access in Smalltalk . 87

A.2. Fixing Reflective Message Sends in DWorlds 88

A.3. Final Scope Reconstitution Algorithm 88

A.3.1. Implementation in Smalltalk 89

A.4. Showcasing Complex Scoping and Re-scoping of Objects 91

A.5. Scope Reconstitution Micro Benchmarks 92

B. Setting up and Working with DWorlds and the dwdbg 95

xiii

List of Figures

2.1. Observable program state leading to an error 11

3.1. An object inspected in different worlds 17

3.2. Experiments during a debugging session 25

3.3. Stack trace of a parse error . 27

3.4. Method refinement in Squeak’s debugger 29

3.5. Method definition during rapid prototyping 30

3.6. Worlds-support as special feature versus general ability 32

3.7. Common tools for run-time program inspection in Squeak . . . 34

3.8. Decoposition of a smiley morph in its components 36

3.9. Installing world-scoped morphs into the morphic world 38

4.1. Parser to compiler relation in Squeak 46

4.2. The architecture of DWorlds . 50

4.3. DWorlds components realizing in-world state access 51

4.4. A method wrapper in action . 52

4.5. Explicit scoping in action . 54

5.1. Dwdbg extension controls in the debugger’s button bar 64

5.2. Context menus exposed by the dwdbg debugger extension . . . 65

5.3. The dwdbg experimentation model implementation 66

5.4. Enabling locality of experiments 67

5.5. Resetting global experiments to a different call stack 68

5.6. User assisted revert of a global experiment 69

A.1. Explicit scoping in action in Morphic 93

xv

List of Tables

4.1. Annotations to control the generation of in-worlds methods . . 47

4.2. The impact of annotations on method generation (and execution) 49

4.3. Scope transitions performed by the rescoping algorithm 57

xvii

List of Listings

3.1. Klaus and Waldi not knowing each other 19

3.2. Experimenting with relationships and names 19

3.3. Unless committed, an experiment remains speculation 20

3.4. Programmer in trouble . 20

3.5. Method source . 21

3.6. Method transformation applied by the Worlds compiler 21

3.7. A piece of unparsable Smalltalk code 26

3.8. A method of the parser that changes the parser’s internal state 28

3.9. Not really safe experiments in Worlds for Smalltalk 31

3.10. Inspecting klaus in the scope of a world 35

3.11. Experimenting with a morph . 38

4.1. Definitions of fixed and variable length classes 42

4.2. Object#instVarAt: dispatching instance variable reads 43

4.3. Source of #meAndMyPet . 45

4.4. Method #meAndMyPet after transformation 45

4.5. A method with local transformations applied 45

4.6. Renaming in-worlds methods . 46

4.7. Guarding in-worlds instance variable lookup 47

4.8. Assigning an alternative in-worlds instance variable lookup . . 48

4.9. A reflective message send which breaks the in-worlds behavior 48

4.10. Local experiments broken through scope reconstitution 56

5.1. Annotated ToolSet class#inspect: method 62

5.2. In-worlds implementation of ToolSet class#inspect: 62

5.3. Displaying a morph in the scope of a world 63

A.1. Instance variable access in Smalltalk 87

A.2. Indexed field access in Smalltalk 87

A.3. Special handling of reflective message sends inside a world . . 88

A.4. Fixing in-worlds reflective message sends 88

xix

List of Listings

A.5. Scope reconstitution algorithm implementation in Smalltalk . . 89

A.6. Scoping in action . 91

A.7. Microbenchmark not performing any actual scoping 92

A.8. Microbenchmark which uses the actual scoping of objects . . . 94

B.1. Configuring Squeak for DWorlds 95

B.2. Removing underscore assignments from a Squeak image . . . 96

B.3. Activating DWorlds in a Squeak system 96

xx

List of Abbreviations

api application programming interface
ast abstract syntax tree
cli command line interface
cop context-oriented programming
gdb GNU Project Debugger
gui graphical user interface
ide integrated development environment
ui user interface
uml Unified Modelling Language
vm virtual machine

xxi

1. Introduction

Comprehending a software system is crucial for both developing and main-
taining it. To implement a certain feature, for instance, a developer must
understand the program he wants to extend to figure out where and how
the functionality is implemented best. The same applies for bug fixing, where
a particular part of a program must be understood in order to locate a bug
and eventually eliminate it. Not surprising, developers spend a considerable
amount of their time with program comprehension [7, 19]. During that ac-
tivity they often turn to debuggers to obtain detailed information about a
program [21, 30].

Debuggers make it possible to interact with running programs by stepping
through them in a user-controlled fashion. By doing so, debuggers enable
it to track down the effects caused by executing certain program parts. This
aids comprehension as it encourages learning through experience1 when
drawing connections between program behavior and code [17]. Arguably, it
also supports a deeper kind of understanding than simply looking at static
views such as source code [17, 20].

1.1. Motivation

During a debugging session, users need to track changes in the program state
live and draw connections to particular parts of the executed code. The com-
plexity of that process leads to the fact that run-time behavior is usually not
understood immediately, rather knowledge about it is built up gradually until
everything forms a big picture [27]. Navigation errors and incomplete per-
ception entail that insights are often gained in retrospect, that is, when it is
already too late. For instance, a user may notice the importance of a statement
when he stepped over it only. Or he might suddenly understand the relevance
of a variable which he failed to pay attention to before. To compensate for

1We may also refer to it as experimental learning [17].

1

1. Introduction

these issues, run-time behavior often needs to be observed repeatedly until it
is fully understood [22, 35]2.

Most conventional debuggers allow the re-execution of methods through
stack rewinding. Often, however, that technique is not sufficient for the safe
re-examination of behavior because it fails to revert global side effects caused
by stepping through the program. The lack of other options forces developers
to restart both program and debugging session whenever they want to repeat-
edly observe a particular behavior from a well-defined starting position. That
in term is tedious and time consuming as the old execution context is lost and
a new one—similar to it—has to be established manually.

Technically, approaches like back-in-time [22, 23] or record-and-replay [39]
debuggers solve the issue by allowing the deterministic re-examination of run-
time behavior. However, they face two issues which “renders them impractical
for frequent use” [30]. At first, they are inherently postmortem, that is they allow
re-examination of run-time behavior after the original program died or the
execution context of interest is gone, only. Therefore, they fail to support local
re-examination of behavior on top of already running programs [32]. Second,
they have performance and scalability issues as huge amounts of run-time
information have to be recorded [23, 32].

1.2. Thesis in a Nutshell

This master thesis examines Worlds [44]—a language extension that can scope
side effects in imperative programming languages—in the context of debug-
ging. It evaluates the application of the concept for the safe re-examination
of behavior on top of conventional debuggers. In contrast to approaches like
record-and-replay or back-in-time debuggers, which realize this through snap-
shotting or recording techniques, Worlds makes it possible by capturing and
later discarding side effects of local program exploration. That in term makes
the online exploration of run-time behavior during a debugging session safe
to be repeated until it yields the desired knowledge gain.

In its core, this work has three contributions: First of all, it presents a exper-
imentation model. The model describes the principal application of Worlds
during debugging, which enables the exploration of run-time behavior in re-
peatable experiments. Second it introduces DWorlds, a general purpose Worlds

2The same observations apply to search results in source code or other forms of big amounts
of information, where entities are often skimmed rather than fully understood [40].

2

1.3. Outline

implementation for Squeak [4]—an interactive programming and execution
environment based on Smalltalk-80 [12]. That mechanism can be used to safely
conduct large-scale experiments on arbitrary Smalltalk-written applications.
Third, it describes the dwdbg, a debugger prototype for Squeak/Smalltalk that
employs DWorlds and the experimentation model to isolate the side effects
caused during parts of a debugging session. By doing so it, allows developers
to safely re-explore program behavior by discarding the effects caused by
prior explorations.

1.3. Outline

The remainder of this thesis are structured as follows: Chapter 2 lays the basis
of this thesis by presenting background information on the topic. Building on
these insights, chapter 3 introduces Worlds and applies the idea of Worlds to
debugging. Furthermore, it justifies the need for a general purpose Worlds for
Smalltalk to be applicable in the described scenario and enlists requirements
for such an implementation. Chapter 4 presents DWorlds, the implementation
of a generic Worlds for Smalltalk. Chapter 5 evaluates the application of
DWorlds as a general purpose Worlds mechanism. In addition, it discusses
the application of DWorlds in the dwdbg, a debugger which realizes the safe
re-execution of behavior inside a debugging session. Chapter 6 depicts related
work in the area. Last but not least, chapter 7 recapitulates the main findings
of this work and sums up the topic.

3

2. Background

In this chapter we introduce the background necessary to dive into the topic.
For that purpose we examine a number of areas adjacent to this work. In sec-
tion 2.1 we dig into program comprehension and how to aid expert developers.
Following up, section 2.2 takes a look at dynamic views and their applica-
tion to aid understanding of software. Section 2.3 introduces debuggers and
relates them to program comprehension and dynamic views. In addition, it
characterizes a typical debugging session as a series of experiments. In section
section 2.4 we conclude this chapter by presenting a light-weight approach to
support the safe re-exploration of behavior inside a debugging session.

2.1. Program Comprehension

For developing or maintaining a software system, programmers need to have
a sufficient understanding of the subject matter. Program comprehension, having
said this, denotes both the ability and the process of gaining understanding
of a software system. It comprises the capability to explain the functioning
of a program and, thus, distinguishes from simply reading out source code.
Biggerstaff et al. gave a concise definition of the term in [3]:

[Program comprehension is the ability to] explain the program,
its structure, its behavior, its effects on its operational context,
and its relationships to its application domain in terms that are
qualitatively different from the tokens used to construct the source
code of the program [3].

The activity is an integral part of a software developers activity and stays
very important in all phases during software development and maintenance
[27]. In fact, studies have shown that programmers spend up to 60 percent of
their time with understanding the program they are working on [7].

5

2. Background

2.1.1. Comprehension Models

Research in the area has come up with various models which aim to ex-
plain how program comprehension works. Despite the differences in details,
most models have a number of key points in common [27]. All approaches
agree that programmers posses two kinds of knowledge: General knowledge
and software knowledge. General knowledge is knowledge independent of a
software such as knowledge about algorithms, patterns and procedures. Soft-
ware knowledge on the other hand represents the level of understanding of
software-specific details. The process of understanding matches both kinds
of knowledge to a mental model of a program until the developer feels that he
understood the program sufficiently well [27].

2.1.2. Supporting Expert Developers

Strategies to gain software knowledge and create a mental model of an appli-
cation differ between novice programmers and expert developers. Mayrhauser
and Vans report that experts are likely to perform shallow reasoning when
building up mental models [27]. For instance, they are often seen to skim
source code rather than analyzing it in depth1. In contrast, novice program-
mers are more likely to carry out deep reasoning and thereby try to figure out
the relationship between objects (e.g. code artifacts) in a detailed analysis [27].

Concerning the differences between experts and novices Mayrhauser and
Vans continue to note:

Experts approach problem comprehension with flexibility. They
discard questionable hypotheses and assumptions much more
quickly than novices do, and they tend to generate a breadth-
first view of the program. As more information becomes available,
they refine their hypotheses [27].

That means, expert developers can be supported by providing them with the
right information to quickly strengthen or discard hypotheses. One valuable
source of such information is actual data taken from a running program.

1An observation which Starke et al. could confirm in exploratory studies on source code
search and skimming [40].

6

2.2. Running Programs as Sources of Insights

2.2. Running Programs as Sources of Insights

Dynamic views present data available at run-time. Thus, they provide informa-
tion which might be hard to extract from static representations such as source
code. Often they enrich static views to increase their value for the understand-
ing of particular aspects of a program. The reasons why developers employ
dynamic views to help understanding programs are three-fold:

• Most information about the behavior of a program can be extracted
from source code. Often though, the ability of doing so is limited by
time constraints as well as the human capacity to remember and/or
build internal mental models [8].

• Short-cutting the process of source code comprehension programmers
often accept incomplete knowledge [27, 40]. At the same time, they
create assumptions based on their existing knowledge and experience.
Dynamic views offer means to strengthen or disprove these assumptions
and thus “eliminate space for speculation” [30].

• Dynamic views provide examples of run-time behavior for inherently
abstract static representations such as source code. They act as external
presentations for the source code and thereby contribute to its under-
standing [42, 34].

Consequently, the need for dynamic views to support program comprehen-
sion is clearly recognized in literature [7, 8, 30, 32, 34, 41]. Research in the
field resulted in various approaches to visualize run-time data in models [2,
8, 37, 43], directly embed run-time information into a integrated development
environment (ide) [30, 34] or use special tools such as the debugger for live
inspection [32, 41].

2.2.1. Dynamic Views in the IDE

The work by Röthlisberger et al. showed how source code could be enriched
with run-time information [34]. User studies they conducted suggest that run-
time data embedded directly into source code accelerated the understanding
of the software at hand, e.g. because users knew exactly, which methods were
invoked during a particular execution of a program [34].

Perscheid et al. argue that tools to provide dynamic views should “allow
for a feeling of immediacy to encourage frequent use” [30]. Hence, these

7

2. Background

tools must be tightly integrated into an ide, easily accessible and responsive
(e.g. with a short start up time) in order to be useful. To provide dynamic
views with immediacy characteristics, Perscheid et al. encourage the use of a
two-phased analysis of collected data. Implementing that idea they present
a tool for visualizing run-time data that shows satisfactory results in both
responsiveness and level of detail provided [30].

2.2.2. Collecting Run-time Data

Information visualized in dynamic views must be collected from a running
program. Different approaches to do so have been presented in related work
on the topic. Often employed to collect run-time data are instrumentation
techniques [2, 30, 34]. Other approaches rely on reflection [2] or use a mixture
of both techniques [37]. All tools require some sort of user intervention to
either manually [2, 8, 34] or semi-automatically [30] to collect run-time data
before a dynamic view can be presented to the user.

2.2.3. Online vs. Postmortem

Whether the program whose run-time data is visualized is still alive when the
data is presented to the user classifies approaches as online or postmortem [2].
Online approaches collect, analyze and visualize data at run-time and allow
interaction with the still running program. They are—due to their nature—
specific to the current run of a software system. Postmortem approaches instead
kick in when the program already died. They are not a priori specific to a
certain run of a program of interest. Therefore, postmortem approaches are
challenged to carry out typical or appropriate runs of a program to gather
data that represents meaningful and relevant results. Most tools that provide
postmortem dynamic views leave it up to the user to decide what a typical
run is and refrain from gathering run-time data through different runs of a
software. Some, in contrast, facilitate running unit tests to collect the data
semi-automatically [30, 41].

2.3. Debugging

Formally, the term debugging refers to “the process of finding and reducing the
number of bugs in a computer program, thus making it behave as expected”2.

2Origin of statement unknown; used unquoted in many places on the internet and in [23]

8

2.3. Debugging

More broadly, however, it can be seen as “the process of interacting with
a running software system to test and understand its [. . .] behavior” [32].
That is why programmers use debuggers both for the sake of bug fixing and
comprehending a program [21, 32, 41].

By means of user-defined break points—typically put in the source code of
a program—a debugger interrupts a running program and enables the user
to walk through the remainder of the execution in a step by step fashion.

2.3.1. Debuggers as Dynamic Views

Conventional debuggers usually show the run-time state of a program along
with source code or another static representation associated with the current
execution context. As such, they provide a dynamic view on a software system.
In two aspects, though, they stand out against most other approaches towards
dynamic views: They are extensible tools to inspect and interact with running
programs and rely on the user to comprehend these through trying out and
experience.

Extensible Online View

The program being debugged is alive when the interaction with it through a
debugger happens. Changes in the program state are immediately reflected
in the debugger’s user interface (ui). That said, conventional debuggers offer
an online view on the running software system.

While debuggers were originally command line interfaces (clis) [29], most
modern ides offer graphical interfaces to debuggers which tightly integrate
in the development environment. Typically, the view on the running program
presented by debuggers is not fixed but can be extended by a user to his or
her special needs. Often for example, debuggers initially show a simple view
on the current execution context only. That view, however, allows a user to
dig deeper into the program state to display and track variables he regards
relevant for the understanding of the debugging subject. That is possible not
least because the user can always resort to the running program to directly
interact with it and thus figure out special pieces of information.

Built for Interaction

Most other approaches towards dynamic views focus solely on providing
more or less elaborated views on run-time data. Debuggers, in contrast, are

9

2. Background

built for interaction with a running program. They allow to experience run-
ning programs by stepping through them rather than simply looking at them.
That in term encourages experimental learning [17] and supports a deeper
kinds of understanding [20].

Interestingly enough, programmers can even change program state man-
ually during a debugging session and thus are allowed to directly interfere
with the program execution. They would do that to compensate errors in
the running program or to test follow up execution under different precondi-
tions. One use case of that activity is playing with a variable to observe how
changing it affects the actual execution of the program under observation.

2.3.2. Supporting Program Exploration

During a debugging session programmers usually inspect a particular code
section or behavior in order to understand it. Thereby they have particular
questions in mind. These questions can range from a general concerns, for
instance “What does that code do?”, to very specific information needs such
as “When did that variable get the wrong value?” [36]. Due to the nature
of comprehension, often new questions arise in the process that need to be
answered accordingly, too [27]. That said, debugging for program comprehen-
sion equals a series of exploratory experiments on a running program with the
goal to answer a number of particular of questions [32].

From a given starting point—i.e. a specific execution context and a well-
defined global state—a user starts an experiment with one or more questions
in mind. He explores the program behavior by stepping through it. Whether
he is able to answer or discard his questions denotes the success of the ex-
periment. That said exploratory experiments can fail for two reasons. At first,
a developer may fail to understand the executed behavior or might have un-
derstood it only to a certain extend. Usually that is the case if he needs to
build up knowledge about a particular behavior incrementally before he is
able to understand it sufficiently well [27]. Second, new questions might have
come up during the exploration and the programmer realizes that these new
questions have to be answered first in order to get the answer to the actual
question.

Both cases lead to the fact that explorations need to be repeated or new
explorations have to be started. Before that is possible the user needs to undo
the remainder of the old exploration. These remainders include the global
side effects caused by stepping through the program as well as the execu-

10

2.3. Debugging

Error: lorem ipsum
...

Figure 2.1.: Observable but hard to reproduce program state in a game that leads to
an error when the T-brick reaches the ground

tion context which probably changed. The incapability of most debuggers to
undo the side effects leads to the fact that program and debugger have to be
restarted to re-establish the proper basis for exploration.

Local and Global Explorations

When talking about understanding run-time behavior we distinguish local and
global explorations. Local explorations are tied to a particular execution context
and program state. They are conducted to understand how a distinct part of
a program works and how that actually affects the application. Examples for
a local exploration is the—possibly repeated—stepping through a method in
order to understand what it does. In contrast, global explorations are not tied
to a single execution context. Instead, they base on a particular perceivable
program state, only and aim to understand the upcoming parts of the program
execution. Global explorations are often conducted in the area of graphical
user interface (gui) applications where the impact of external events (e.g.
user interactions) or internal stepping mechanisms must be understood. An
example for that is the implementation of a well known game where a T-brick
reaching the ground triggers an error (cf. figure 2.1). While the behavior is
easy to perceive, it may be hard to track down and reproduce the error.

11

2. Background

2.4. A Light-weight Approach to Safe Experimentation

Expert developers usually have a good feeling about which pieces of a pro-
gram are important for a specific use case and thus may need in-depth ex-
amination [27, 40]. Based on that knowledge, light-weight approaches can be
employed to makes explicitly indicated exploratory experiments repeatable.
One way to do so is checkpoint debugging which gives the user a chance to
specify points in a debugging session he can can revert to later. The GNU
Project Debugger (gdb)3 supports it and the gdb user documentation de-
scribes concisely what checkpointing is:

Returning to a checkpoint effectively undoes everything that has
happened in the program since the checkpoint was saved. [. . .]
Effectively, it is like going back in time to the moment when the
checkpoint was saved.

Thus, if you’re stepping thru a program and you think you’re
getting close to the point where things go wrong, you can save
a checkpoint. Then, if you accidentally go too far and miss the
critical statement, instead of having to restart your program from
the beginning, you can just go back to the checkpoint and start
again from there.

This can be especially useful if it takes a lot of time or steps to
reach the point where you think the bug occurs [10].

Checkpoint debugging cannot guarantee perfect determinism when exam-
ining behavior repeatedly. The reason is that program parts have to be re-
executed on top of checkpoints to repeatedly inspect the run-time behavior.
As a result components like time, external uncontrollable resources (i.e. some
web service) or the presence of multi-threading can screw with the program
execution and lead to different results in consecutive runs. Still, it is often
sufficient for behavioral re-examination. The reason is that it bases the re-
execution on the same prerequisites (i.e. program state) and thus allows the
user to recognize important beacons such as previously discovered important
variable changes from one state to the other. We say that re-examination of
behavior based on checkpointing is quasi deterministic, that is deterministic for
the majority of every day use cases.

3http://www.gnu.org/software/gdb/

12

http://www.gnu.org/software/gdb/

2.4. A Light-weight Approach to Safe Experimentation

Debuggers supporting checkpointing face two issues, (1) saving the exe-
cution context to return to it later and (2) preserving the program state at
a given point in time so that it can be restored later and re-execution of the
behavior can be achieved. The gdb uses platform-specific features to tackle
these issues. On Linux systems for instance it realizes checkpointing using
a platform specific snapshotting technique. On some platforms, in contrast,
it does not support checkpointing due to the lack of platform features to
implement it [11].

The remainder of this work examines if something similar to checkpoint
debugging can be implemented platform independent given the ability to
control the scope of side effects. Worlds [44], an interesting extension to object-
oriented programming languages provides exactly that functionality. Rather
than snapshotting the program state at a given point in time, it could allow us
to execute program behavior during a debugging session inside an experiment
whose effects can easily be discarded. Worlds serves as a basis for our study
which starts in the following chapter.

13

3. Experimenting with Worlds

Warth et al. introduce Worlds as a language construct that “reifies the notion of
program state and allows programmers to limit the scope of side effects” [44].
Particularly interesting about Worlds is that it can capture effects such as state
changes caused by parts of a program’s execution. Reflecting on execution
results a program can decide whether the effects should become globally visi-
ble or can safely be forgotten. This unique ability renders Worlds a clean and
simple mechanism to safely perform speculations and experiments within iter-
ative programs. In the context of debugging, Worlds can be an interesting tool
to look at, too. Because of its ability to scope side effects it can be employed to
encapsulate certain parts of a debugging session in exploratory experiments
whose effects can be easily reverted.

This chapter examines the application of Worlds in the debugging domain.
To start with section 3.1 briefly introduces the language mechanism as pre-
sented by Warth et al. in [44]. Following up, section 3.2 shows how the concept
of Worlds can be used in principle to make exploratory experiments during
a debugging session reversible. Section 3.3 evaluates the applicability of the
current Worlds implementation for Smalltalk to be employed in the described
scenario. Based on these findings, section 3.4 motivates the need for a generic
Worlds for Smalltalk that enables the scoping side effects caused by arbitrary
Smalltalk-based applications.

3.1. Worlds in Brief

To start with, this section gives an overview about the goals of Worlds [44],
depicts the basic concepts behind it and provides examples how it feels being
embedded in the Smalltalk programming language. Furthermore, it presents
the details needed to understand and evaluate the current implementation of
Worlds for Squeak/Smalltalk.

15

3. Experimenting with Worlds

3.1.1. Goals and Applications

One of the major drivers for Worlds is the need to safely perform speculations
and experiments within iterative programs. It does so by offering a “clean
and flexible mechanism for controlling the scope of side effects” thereby
implementing a simple way of “doing and undoing” [44].

Worlds becomes especially useful whenever the failure of particular actions
is anticipated and needs to be compensated or rolled back through some sort
of cleanup operation. That comprises a number of applications like trying
to randomly find solutions for difficult problems or working with unreli-
able services. Furthermore, it fits use cases such as user-triggered undo or
transactional memory [13, 35] semantics.

3.1.2. Underlying Concepts

Central to Worlds is the world which is the scope object state is perceived and
parts of a program can be executed in. While having the same identity an
object may have a different state depending on in which world1 it is inspected
(cf. figure 3.1). Conceptually there does not exist something like non-world
execution, because an instance of a world—top-level world representing the
global state—is active per default. In practice, we distinguish between the
execution in the top-level world, which yields the normal unscoped program
behavior and the execution in nested worlds that scopes side effects. In the
following we refer to the latter as in-worlds execution while we regard the
top-level world as the root or global scope. Beginning from the top-level world,
worlds can be arbitrarily nested to allow independent experiments based on
the parent scope. By nesting worlds, two worlds span a parent-child relation-
ship in which the child world initially inherits the state of the parent.

To allow safe experimentation Worlds ensures two important properties:
Isolation and consistency.

Properties for Safe Experimentation

Similar to transactions in software transactional memory [13, 31, 35] worlds
isolate the behavior executed in them [44]. In the context of Worlds that means
that (1) side effects are captured in a world so that program parts executed

1Mind the difference when reading on: Worlds denotes the language construct described
in [44], a world is the environment proclaimed by Worlds and worlds is the multiple of a
world.

16

3.1. Worlds in Brief

Figure 3.1.: An object inspected in different worlds (taken from [44]).

outside it are not affected and that (2) execution outside the world does not
affect the execution of worlds scoped program parts. Ensuring the isolation
property leads to two important insights: First, worlds preserve a consistent
view on object state. Once read, the state of an object in the scope of a world
will not change unless it is changed from inside the world2. Second, side
effects produced by execution inside a world are not visible to the outside
until the world state is explicitly committed.

The other property Worlds adheres to is consistency which is also known
from transactions [31, 44]. Consistency ensures that the side effects captured
in the world are either committed as a whole or no change is made when a
world should be committed. This makes sure that the parent scope of a world
is never left in an inconsistent state.

Ensuring Consistency

To ensure consistency in Worlds, worlds can only be committed when they
are up-to-date with regard to their parent, i.e. the parent of a world did not
change in the meantime. For a parent world p and its child c it is more
specifically defined in the following way: For every object state sc accessed in
c the corresponding value sp in p did not change since sc was first accessed.
This property makes sure that committing a world cannot override changes in

2Warth et al. call that the “no surprises” property

17

3. Experimenting with Worlds

the parent world unless whatever was executed in it is independent3 of these
changes4.

Worlds employs an optimistic concurrency control protocol and checks the
up-to-date-ness during the commit phase only [31]. By doing so it makes it
possible to run multiple experiments in parallel—independent to each other,
the state of the parent and of whether a world should ever be committed or
not. Upon commit of a world a check is performed which makes sure that
the world is still up-to-date, thereby making sure that committing it does
not put the parent in an inconsistent state [44]. Worlds are committed in a
uninterrupted manner so that only one commit can be performed at a time
and global consistency is ensured.

The Worlds API

A world w in Worlds is a first-class entity and as such reifies program state.
To let the magic happen, it offers the following abstract operations:

sprout(w) → wchild Create and returns a child world wchild of w that
inherits all captured side effects. Preserving the isolation property, changes in
the child will not be visible in w before it got committed.

eval(w,block) → anything Evaluates block (a number of statements) in
the scope of the world w. Side effects produced by the block execution get
captured in w and the result of the execution is returned.

commit(w) Commit the side effects in world w into the parent world,
thereby making sure that the consistency property is not violated.

Interested readers may have noticed that there is no abort or rollback

operation as known from transactions. The reason is a conceptional one:
Rather than manually removing a world and thus cleaning it up, it is forgotten
and cleaned up automatically (e.g. by the garbage collector when it is no
longer referenced).

3i.e. accessing different objects
4Up-to-date-ness in term is a common consistency semantic found in versioning control

systems as well as the implementation of transactional memory for Smalltalk presented by
Renggli and Nierstrasz [31].

18

3.1. Worlds in Brief

3.1.3. Look and Feel

While the previous subsections hopefully laid the foundation needed to un-
derstand Worlds as a concept, we will now show how it actually feels using it.
Therefore, we discuss a small example of how Worlds looks like when being
embedded in Smalltalk.

The basis of our example is shown in listing 3.1. Two characters exist in the
global scope: waldi, a pet and klaus, a person. Both do not yet know each
other. Given both waldi and klaus, we want to use Worlds to experiment
with their relationship. We obtain the active world w1 using a factory function
as shown in listing 3.2. As it represents currently active scope we need to
create a child world w2 to experiment in.

| klaus waldi w1 w2 |

waldi := Pet new.
waldi name: 'Waldi'.

klaus := Person new.
klaus name: 'Klaus'.

Listing 3.1: Klaus and Waldi not knowing each other

Within w2 we make klaus and waldi get to know each other whereas we
take the opportunity to change klaus’ name to Achim, too. Checking the
name of klaus we can assert that klaus is in fact called Achim in the scope
of w2.

"Obtain the current world"
w1 := DWorld current.

"Create a child world"
w2 := w1 sprout.

w2 eval: [
klaus
pet: waldi;
name: 'Achim'.

klaus name. "Achim"
].

Listing 3.2: Experimenting with relationships and names

19

3. Experimenting with Worlds

Outside our experiment we can confirm that nothing changed (i.e. the
isolation property has been obeyed). Neither has klaus been renamed nor
did he get to know waldi (cf. listing 3.3). Things change, however, when the
experiment executed in w2 gets committed. In that case both know each other
and klaus indeed has to apply for a new passport.

"Changes local to the world are not visible outside of it"
klaus name. "Klaus"
klaus pet. "nil"

"Unless the world is committed"
w2 commit.

klaus name. "Achim"
klaus pet name. "Waldi"

Listing 3.3: Unless committed, an experiment remains speculation

But what happens if we change klaus name in w1 right before committing
the experiment? Taking the consistency rules mentioned in section 3.1.2 into
account, experiments are not allowed to override changes in the parent scope.
Therefore, trying to commit w2 would signal an error instead of leaving our
top-level world in a possibly inconsistent state (refer to listing 3.4).

w2 eval: ["our experiment"].

"Change name outside the experiment"
klaus name: 'Sven'.

"Will signal serialization error"
"(klaus' name changed in both w1 and w2)"
w2 commit.

"While w2 was not committed"
klaus pet. "nil"

Listing 3.4: Programmer in trouble

This example should have given a basic impression how it feels like to
work with Worlds. Following up we will dig a bit deeper into Worlds for
Squeak/Smalltalk and highlight a few implementation-specific specialties.

20

3.1. Worlds in Brief

3.1.4. Inner Workings of Worlds for Smalltalk

Warth et al. realized Worlds prototypes for both JavaScript and Squeak/Small-
talk and describe their Squeak implementation as the “more performant pro-
totype of Worlds” [44]. We will now focus on Worlds for Squeak/Smalltalk
and depict the most important details about the implementation.

Accessing World-specific Object State

Worlds for Squeak implements world-aware objects in subclasses of WObject.
For the class and its subclasses Worlds changes instance variable lookup and
store semantics to achieve world scoped instance variable access [44].

In instances of WObject and its subclasses state access is redirected to the
objects state in the currently active world. To realize this behavior WObject
overrides the methods #instVarAt:, #instVarAt:put:, #at: and #at:put:
which are responsible for variable reads, writes as well as indexed field ac-
cesses. The standard Squeak compiler inlines instance variable access in meth-
ods rather than using the generic accessors #instVarAt*. To fix this, Worlds
ships with a special compiler. This compiler transforms methods in subclasses
of WObject to use the #instVarAt* methods rather than direct instance vari-
able access and thus makes the access Worlds-friendly. As the transformation
happens before the compilation to byte-code, it is not visible in the sources of
transformed methods (cf. Listings 3.5 and 3.6).

Person#meAndMyPet

^ self name,
' and ',
self pet name.

Listing 3.5: Method source

Person#meAndMyPet

^ (self instVarAt: 0),
' and ',
(self instVarAt: 1) name.

Listing 3.6: Method transformation ap-
plied by the Worlds compiler

Implementing Worlds features on top of WObject limits the application
of Worlds to classes based on WObject. As a result applications must be
rebased on WObject if they want to benefit from Worlds-specific features.
Warth et al.’s Worlds implementation for Squeak/Smalltalk ships with some
basic Worlds-aware classes. These comprise reimplementations of Array,
OrderedCollection and Dictionary on top of WObject.

21

3. Experimenting with Worlds

Evaluating Code

A world is implemented by the WWorld class and holds records to object
state accessed in it. To allow parallel usage of Worlds in multiple processes
the current WWorld is stored local to the running process in a process-specific
variable [44]. When a piece of code should be evaluated in the scope of a world
it is passed to WWorld#eval: as a block (cf. Section 3.1.2). Upon invocation of
#eval: the world stores itself on the process, evaluates the block and restores
the previously active world for the active process.

In order to be able to ensure isolation when evaluating code inside a world,
each WWorld caches object state with copy-on-read semantics. That is, when-
ever an instance variable or indexed field is accessed for the first time in a
world, it will be looked up in the parent and copied to the child as the new
working value. During consecutive access the working value is returned and
no lookup is needed.

Committing

To ensure consistency upon commit a world keeps two versions for each object
attribute or indexed variable accessed in it: The working value representing
its current state and the original value at the time it was first accessed in the
world. Upon commit, the world performs a serialization check [44] and makes
sure that the original value and the working value in the parent world did
not diverge. In case they diverged the world is no longer up-to-date and the
commit operation is aborted with an error.

This section gave an overview about Worlds, both regarding the under-
lying concept and the implementation for Squeak/Smalltalk. The following
section will describe the principal application of Worlds to make exploratory
experiments reversible.

3.2. Aiding Exploration

We propose the usage of Worlds in exploratory experiments that are con-
ducted during a debugging session. It allows us to encapsulate the side effects
cased by the program exploration during experiments. Eventually, that makes

22

3.2. Aiding Exploration

backtracking of experiments both regarding program state and execution
context possible and allows for the safe re-examination of behavior inside a
debugging session.

3.2.1. Experimentation Model

In the following we define the model that enables the safe experimentation
during a debugging session5. The center of the model is an exploratory ex-
periment e which we define as a tuple (wprevious, c,wbase,wcurrent). The
contents of the tuple are formalized as follows: wprevious is the active world
and c is the execution context at the time the experiment was initiated. wbase

is the base world of the experiment and an immediate child of the active
world at the time the experiment was initiated. Thus it is either a child of
the top-level world or the previously active world. wcurrent is an immediate
child of wbase which is used to capture the side effects during the execution.

Experimental Operations

Six abstract operations in addition to these introduced in section 3.1.2 form
the basis to work with exploratory experiments during a debugging session:

currentWorld() → w Returns the currently active world w at the time the
operation was called. Defaults to the top-level world in case no other world is
active.

create() → e This operation initiates a new experiment. The experiment
e = (wprevious, c,wbase,wcurrent) gets created in a way that wprevious =

currentWorld() is the currently active world, c is the current execution con-
text, wbase = sprout(wprevious) is a child of the active world and wcurrent =

nil. The world wbase captures the state of the parent experiment at the time
the experiment was created.

activate(e) → e Activates the experiment so that all follow up interactions
with the program under observation are scoped to the experiments’ active
world wcurrent, that is currentWorld() = wcurrent. The world is active until
the experiment gets discarded, another experiment is activated or the world

5Note that the model targets experimentation with single-threaded applications only

23

3. Experimenting with Worlds

change is triggered programmatically (for instance because the program being
explored uses the Worlds mechanism itself).

reset(e) → e Resets and possibly re-starts the experiment e. Thereby it
sets the current execution context to c and recreates the current world as
wcurrent = sprout(wbase).

After resetting an experiment the execution in the debugger continues
at the point where the experiment was originally created. Additionally the
experiment runs in a new world that is derived from the experiments base
world. That discards changes in previous runs of the experiment silently.
Deriving wcurrent—the actual world of the experiment—from wbase makes
sure that the experiment will always start with the same prerequisites, i.e. is
independent of the parent experiment.

discard(e) → e Discards the experiment and restores execution context c
and the world wprevious to continue in the execution where the experiment
was started.

commit(e) → e Commits the side effects caused during an experiment
when the experiment is completed successfully. Restores the world wprevious

to continue in the parent experiment at the point this experiment was ended.

Based on these six operations, starting a new experiment can be modeled as a
combination of creating the experiment as well as resetting and activating it.
Thus it can be defined as start() = activate(reset(create())).

Preliminary Discussion

In the model, exploratory experiments and worlds are tightly connected to
each other. An experiment contains a current world that captures the side
effects while the experiment is active. To ensure independence of the experi-
ment with regard to the parent, the experiment is associated with a base world,
too, from which the side-effect capturing, current world of an experiment is
derived. That base world is sprouted once from the world that is active at the
time the experiment is created. The fact that an experiment does not base on a
possibly existing parent experiment but on the currently active world ensures
that applications can use the Worlds-mechanism themselves.

24

3.2. Aiding Exploration

t

<<start>> <<restart>> <<start>> <<discard>>

Wbase2

<<debugger
session
close>>

Wcurrent0

Wcustom

Wcurrent2

Top-Level World …

Wbase

Wcurrent1

sprout active world experiment life span

<<debugger
session
start>>

Experiment

Nested
Experiment

Application
Experiment

application
managed experiment

start/end

Figure 3.2.: Worlds and experiments during a fictive debugging session

Figure 3.2 depicts the relationship between experiments and active Worlds
during a fictive debugging session. It shows two experiments that were con-
ducted during a debugging session and highlights which world was active at
each point in time. Marked on the time line are important events that occur
during the session. At the beginning of the debugging session no experiment
is active. That makes objects scope to the top-level world, an always existing
world that represents the global context. At the time a user wants to under-
stand a method in detail, he starts a new experiment (denoted by the first
«start» event). That conserves the current state of the top-level world in the
experiments base world. Additionally, it activates a newly created child of that
base world. Some time later, he wants to safely re-examine the method and
thus restarts the experiment (cf. «restart» event). That replaces the currently
active world with a new child of the experiments base world. The world gets
temporarily disabled as the user starts a nested experiment (second «start»

25

3. Experimenting with Worlds

event) and gets re-activated only when the nested experiment is discarded
(«discard» event).

Application-local experiments embed naturally in the described model.
Whenever an application executes code in the scope of a new world that world
is a child of the currently active world, which in term could be the current
world of an exploratory experiment. Resetting or discarding the exploratory
experiment discards nested application level experiments, too.

3.2.2. Example Scenarios

In the following, we go through a number of examples to show how Worlds
for debugging, especially the encapsulation of certain debugging steps in
reversible explorations, can benefit particular real-world debugging scenarios.

Understanding Program Behavior

As mentioned previously, understanding a program from source code alone is
a time-consuming and complex activity. Therefore, developers often employ
debuggers to get a dynamic view on the program. That view helps them to
explore relationships between objects and gain other kinds of information
that is hard to extract from source code. Our first example depicts, how the
debugger can be used to understand a program or better how it can help to
find the right place to extend the program with certain features.

During the work on a source-code generation tool for Squeak/Smalltalk,
it got apparent that the RBParser—a tool which creates an abstract syntax
tree (ast) from a source text of a method—failed to recognize binary methods
when they were prefixed with alphanumeric characters. That made it impossi-
ble for the parser to recognize source texts such as the one shown in listing 3.7.
The question was, how could the parser be best extended to recognize these
special characters?

Number#__special__/ aNumber

^ 'I would have executed a special binary method'

Listing 3.7: A piece of Smalltalk source code, unparsable by recent versions of
RBParser for Squeak/Smalltalk 4.x (the code was the subject of a automatic selec-
tor rewrite operation).

26

3.2. Aiding Exploration

Figure 3.3.: Stack trace of a parse error

A quick look at the stack trace, depicting the origin of a cryptic “vari-
able expected” error, revealed that the entry point for the parser is the
class side method RBParser class#parseMethod:. That method somehow
delegates to the instance side method RBParser#parseMethod. Eventually,
the parser would fail trying to parse a primitive object in RBParser#parse
PrimitiveObject (cf. figure 3.3).

Despite debugger support, best efforts and good knowledge about Smalltalk
in general, it took roughly 15 minutes to understand the problem and addi-
tional ten minutes to locate the position in the parsing infrastructure where
the extension could be implemented best. The reasons for that are two-fold.

Some methods consume tokens from the source stream, i.e. they change
the internal state of the parser while they execute (cf. listing 3.8, lines 3 and
8). Simply re-executing these methods via stack-rewinding is not possible, as
that creates a mismatch between execution context and state. For example,
the method RBParser#parseUnaryMessage shown in listing 3.8 would, when
being re-executed, expect a primitive token n when initially parsing the first
source node. The internal state would already offer the next token n + 1

and the mismatch messes up all subsequent observations. Often, it is even
impossible to compensate that mismatch because the state changes happen
undetected to the user. Once again looking at listing 3.8, a developer would
not notice the changes in the internal state of the parser unless he steps into
the method #parsePrimitiveObject, invoked in line three of the listing.

27

3. Experimenting with Worlds

parseUnaryMessage
2 | node |

node := self parsePrimitiveObject.
self addCommentsTo: node.
[currentToken isLiteralToken

ifTrue: [self patchLiteralMessage].
7 currentToken isIdentifier]

whileTrue: [node := self parseUnaryMessageWith: node].
self addCommentsTo: node.
^node

Listing 3.8: A method of the parser that changes the parser’s internal state

The result is that the debugging session has to be frequently re-started
in order to safely re-examine the parsing behavior. That also implies that
the execution context, e.g. “beginning of method x, when conditions y1..yn

apply”, has to be re-established. Depending on how often method x is called
and how easy it is to check the conditions y1..yn that can be a tedious and
time consuming activity.

Worlds for debugging helps tremendously in the described example. At
first, it allows us to examine methods like RBParser#parseMethod repeatedly
and in a safe and reversible manner, without the need to re-start the debug-
ging session. Furthermore, it makes it possible to structure the session into a
series of nested experiments like “understanding class side #parseMethod:”,
“understanding #parseMethod”, “understanding failure in #parsePrimitive
Object” and so forth. Each of the experiments could easily be backtracked
whenever new insights lead to the violation of assumptions and thus render
the experiments useless.

One of those assumptions in the described scenario is that the parser was
the cause of trouble. In fact, it was not the parser that had to be extended
but an upstream RBScanner which tokenizes the source stream. Later on, the
parser starts to work on the already corrupted token stream and eventually
recognizes illegal tokens.

Debuggers as Rapid Prototyping Tools

Ressia et al. note that debuggers are often used in test-driven development to
identify which parts of the program need to be implemented next [32]. While
not all debuggers are good at that activity, the Squeak/Smalltalk debugger
arguably is, because it facilitates the on the fly definition of missing methods

28

3.2. Aiding Exploration

Figure 3.4.: Method refinement in the Squeak/Smalltalk’s debugger

and their refinement during a debugging session. That makes it also a viable
tool for rapid prototyping.

The goal of a programming session is to extend the class Person with a
facility to instantiate the model from information publicly available in a social
network. A class side method should implement that behavior. Rather than
explicitly implementing the method, the user evaluates code that accesses the
method. The access of a undefined method triggers a method not understood
exception and pops up the debugger. As shown in figure 3.4, the developer
can use the tools provided by Squeak/Smalltalk to define the method on the
fly and jump right into debugging it. Inside the debugging session he is able
to refine the method definition. Thereby he can resort to tools such as the
inline definition of new classes and instance variables (cf. figure 3.5). Testing
the code comes integrated in the development process, as the method can be
executed and thus checked right after its definition was changed.

As we have seen in the previous example, the usage of Worlds for de-
bugging can eliminate the need to restart a debugging session, as long as
experiments during the session are prepared accordingly. Consequently, con-
tinuous experimentation with a running program works well together with
the rapid prototyping capabilities of the Squeak/Smalltalk debugger, because
even less time is wasted with restarting debugging sessions. When combining
safe experimentation using Worlds with a platforms capability to evolve pro-

29

3. Experimenting with Worlds

Figure 3.5.: Method definition during rapid prototyping in Squeak/Smalltalk

grams during a debugging session, a debugger becomes an always running
tool for the simultaneous development and inspection of run-time behavior.

3.3. Practical Limitations

The previous section presented the principal application of Worlds to make
exploratory experiments during a debugging session reversible. In practice
the application of the current Worlds implementation for Squeak/Smalltalk
to the described scenarios is limited for several reasons.

Worlds for Squeak/Smalltalk builds Worlds support on top of a special
class hierarchy. Because of that the ability to scope side effects is limited to a
small number of classes (cf. listing 3.9). However, a Worlds implementation
applicable to the debugging scenario must allow large-scale experiments on
arbitrary objects. That said, it must offer a general purpose Worlds mechanism
rather than a specifically bedded version (compare figure 3.6 on page 32).

A general purpose implementation faces a number of issues for which the
current Worlds implementation does not have an answers to. At first, there
is the question of how to implement a Worlds dispatch—the mechanism that
dispatches instance variable access through the currently active world—in a

30

3.3. Practical Limitations

| warray array w1 |

warray := WArray with: #foo. "array containing #foo"
array := Array with: #foo. "a different array containing #foo"

w1 := DWorld current sprout. "world to experiment in"

w1 eval: [
warray at: 1 put: #bar.
array at: 1 put: #bar.

].

warray at: 1. "#foo"

"Array is not a world-scoped class"
array at: 1. "#bar"

Listing 3.9: Not really safe experiments in the original Worlds for Smalltalk

manner, so that it works for any object. In the current Worlds implementation,
state access is always dispatched and thus incurs a performance penalty. For a
general purpose implementation, it might be desirable to dispatch state access
only when it is actually needed, i.e. when an object is currently accessed in
the context of a side effect scoping world.

Second, there is the question of how to implement the Worlds core in the
presence of a global Worlds dispatch. A number of classes are required to
implement the Worlds mechanism as such, including world-scoped instance
variable access, logic for sprouting and committing. That core must not use
the Worlds dispatch or else infinite recursions will occur. Warth et al. circum-
vented the problem by limiting Worlds features to a small amount of classes.
Thereby they where able to implement the Worlds core using the other 99 per-
cent of the remaining classes in the Squeak/Smalltalk eco system. A general
purpose Worlds for Smalltalk must instrument core classes such as Array and
Object, too (again, refer to figure 3.6). That makes the naive implementation
of Worlds using these classes not an opinion.

New challenges such as customizability, e.g. to work with primitively imple-
mented behavior6 or irreversible operations, arise in the context of a general
purpose Worlds. The current Worlds implementation has no answers to both
and as a result it does neither employ a safe and generic way to handle
primitive methods, nor does it deal with irreversible operations.

6Behavior that is implemented in the virtual machine (vm) rather than in Smalltalk code

31

3. Experimenting with Worlds

Object

WObject

WArray WOrderedCollection

Morph ...

Array OrderedCollection

...

Object

Array

Morph

OrderedCollection

...
...

Worlds support exclusive non mixed

Figure 3.6.: Worlds-support as special feature versus general ability

Last but not least, the current Worlds implementation for Smalltalk does not
support a number of scenarios, first and foremost the inspection of in-worlds
object state through conventional dynamic views and the safe experimentation
with graphical applications.

3.4. Towards a General Purpose Worlds

The limitations of the current Worlds for Smalltalk make it impossible to use it
in the proposed scenario. Needed is a general purpose Worlds mechanism that
enables the usage of Worlds in large-scale experiments on arbitrary classes (cf.
figure 3.6). This section introduces some of the major requirements for such a
mechanism.

3.4.1. Generic Worlds Dispatch

One basic feature of a general purpose Worlds is a Worlds dispatch that
looks up object state in the context of a world. A few requirements make
sure the dispatch seamlessly embeds into the Smalltalk ecosystem and stays
compatible with existing applications.

Pluggability The majority of applications should be Worlds-ready out of
the box. That means that the Worlds implementation must be easily pluggable
and should pose no special requirements on existing applications (e.g. usage of
accessors or adherence to a special naming scheme). Pluggability ensures that
Worlds is a generally usable mechanism and limits the complexity which is
added to applications in order to employ Worlds.

32

3.4. Towards a General Purpose Worlds

Customizability While most applications should work in Worlds out of the
box, customizations to the implementation must be possible to meet special
needs of certain applications. These needs comprise (1) safe ways to work
with primitive methods inside a world, (2) performance optimizations for
state lookup as well as (3) handling of irreversible operations, e.g. file system
access.

Transparency In order not to impinge on program understanding and main-
tainability, the Worlds mechanism must be implemented transparent to the user.
That means that only the Worlds application programming interface (api)
should be exposed in application code while the internal mechanism is hidden.
For understanding a program at run-time this means that stepping through
it should show similar execution semantics in the presence and absence of a
world scoping.

Separation of Concerns To make both, the applications and the Worlds
mechanism, easier maintainable a Worlds implementation should aim for
separation of Worlds-specific concerns (e.g. state lookup in the scope of a
world) and non-worlds concerns (e.g. normal state lookup).

Performance While not being a primary focus of this thesis, performance
still plays a key role for a Worlds mechanism. An ideal Worlds mechanism
should not impact system performance outside the scope of a nested world
at all. At the same time, the performance impact caused by world-scoping
should be kept minimal so that the experimenting with running programs
can still be done with an acceptable speed.

The requirements mentioned here ensure that the Worlds mechanism is
“general applicable and easy to employ”. In the following subsections we will
explore two scenarios, which are of high importance for a general purpose
Worlds: Tool support and working with gui applications.

3.4.2. Tool Support

Squeak/Smalltalk offers a number of tools that show a run-time view on ob-
jects in a running program and thereby allow both inspection of and interac-
tion with these objects. The tools are usually invoked directly from application
code or from within an already existing dynamic view. Figure 3.7 shows the

33

3. Experimenting with Worlds

Figure 3.7.: Common tools for run-time program inspection in Squeak/Smalltalk:
Debugger (top right), Inspector (bottom) and Explorer (top left).

three most prominent dynamic views in Squeak—debugger, inspector and
explorer. All three tools contribute to the understanding of running programs
as they display the run-time state of application objects. Furthermore, they
allow user-object interaction by evaluating Smalltalk code in the context of
displayed objects.

Listing 3.10 shows the usage of these development tools in a Worlds context.
Klaus—a person we already got to know in section 3.1—is experimented with.
In the scope of w1, a new world, klaus’ name is changed. To ensure the name
change worked, klaus is inspected and the program is halted. Both, the
inspector showing klaus and the debugger opening up, should not be part
of the experiment but rather be regarded as system tools operating outside
of experiments. At the same time, they should show objects in a world with
their world-specific object state and allow interaction with the objects local to
the current world.

These observations lead us to two specific requirements for a general pur-
pose Worlds mechanism for Smalltalk:

34

3.4. Towards a General Purpose Worlds

| klaus w1 |

klaus := Person new.
klaus name: 'Klaus'.

"Child of the current world (to experiment in)"
w1 := DWorld current sprout.

w1 eval: [
klaus name: 'Achim'.

"Inspect klaus in the scope of the current world"
klaus inspect.

"Halt the program to inspect klaus"
klaus halt.

].

Listing 3.10: Inspecting klaus in the scope of a world

(1) The mechanism must allow it to invoke system tools such as the de-
bugger, inspector and explorer from inside an experiment. At the same
time it must ensure that these tools are running outside of the experiment,
i.e. are not world-scoped.

(2) System tools must be able to interact with objects in the scope of the
objects world. That is required to (a) visualize the object state and (b)

allow world-scoped object interaction.

In order to allow interaction with system tools and world-scoped objects
a general purpose Worlds mechanism must offer a facility to locally scope
interaction with an object to a particular world so that a world-scoped object
can safely be inspected from outside the world it was scoped to.

Fulfilling these two requirements makes it possible to employ the com-
mon run-time inspection tools outside experiments. At the same time world-
scoped objects can be inspected with their in-worlds state. Attaching the
world-scoping directly to an in-worlds object makes it possible to inspect,
explore or debug worlds-scoped objects without the need to adapt existing
tools. With that in mind we will now examine how Worlds can be used in the
context of gui programs.

35

3. Experimenting with Worlds

[]

[]
Figure 3.8.: A smiley morph and its child morphs forming a tree structure

3.4.3. Support for GUI Applications

Squeak/Smalltalk is a living system that contains everything from source
code, methods and classes over development tools to the actual programs
being run. Created applications do not run standalone but rather integrated
in the Smalltalk environment [4, 12]. For that reason it is no surprise that
graphical applications run tightly integrated into the system, too.

To create graphical applications in Squeak/Smalltalk a user probably relies
on Morphic, the Squeak user interface framework [26]. Central to Morphic
is a morph which is the Morphic abstraction for a single graphical element.
Each morph has global bounds, a color and a number of extension attributes.
Furthermore it has an owner (another morph that contains it) and a number
of submorphs. Owner and morph as well as morph and submorphs span
a parent-child relationship. That results in a tree structure originating at a
morph without owner (cf. figure 3.8). To make morphs interactive they can
handle input as well as user interface events such as drag-and-drop, mouse
move or key press and react to these events accordingly. Additionally morphs
can receive regular stepping impulses to realize periodic recomputations such
as the movement of submorphs.

The root morph in the hierarchy of displayed morphs is the Morphic world,
an instance of PasteUpMorph. It is always displayed and exposed to all ob-
jects in the system as a global World variable. A single user interface pro-
cess is responsible to continuously cycle the Morphic world (see Project
class#spawnNewProcess). During each cycle, the world will handle captured
input events, invoke step methods on interested child morphs and redraw the
user interface (cf. WorldState#doOneCycleNowFor:).

In order for a morph to be displayed in Squeak/Smalltalk it must be explic-
itly added to the active morphic world. That happens through Morph#open

36

3.4. Towards a General Purpose Worlds

InWorld which internally adds the morph to the worlds’ list of submorphs
and registers the morphs’ desired stepping (if any). The addition of a morph
to the Morphic world is persistent until the morph is explicitly removed using
Morph#delete.

Morph and owner are tightly connected in a bi-directional relationship. In
that relationship both sides are free to initiate the communication. A morph
for instance notifies the owner whenever its appearance in terms of color,
positioning, size or child morph appearance changed. Additionally it com-
municates with the owner to realize a number of other functions such as
deleting itself from the Morphic world. The owner on the other hand com-
municates with a morph mainly during a cycle. It starts the communication
with submorphs to dispatch events, invokes step methods on submorphs and
to initiate their redraw during a world cycle. In addition the owner can also
communicate with the child out-of-band, e.g. to dispatch deferred change no-
tifications. Special care has to be taken when we want to enable Worlds-scoped
behavior in Morphic. Wherefore, we will depict in the following example.

Listing 3.11 depicts the usage of Morphic in the context of Worlds. It shows
a piece of code that creates a morph m. It adds m to the morphic world,
thus making it visible to the user. Later, the world w1 is used to conduct an
experiment in which a yellow colored morph m1 is added to the morphic
world. Some time in the future the morphs m and m1 get deleted so that they
are no longer displayed.

What is the visual result of that code section? The morph m gets added
to the morphic world in the global state and thus is visible to the user until
it is deleted. The yellow m1 morph, though, is added in a local experiment.
Changes to the experiment are only visible inside the w1. As the world is not
active during ui cycles m1 remains unrecognized. In fact, the yellow morph
is never really added to the morphic world and thus at no point in time
displayed to the user.

To actually display m1 as a yellow colored morph it must be installed into
the morphic world as a permanent local experiment (cf. figure 3.9). This ensures
that the communication of the paste up morph with m1 is always carried out
in the scope of w1. At the same time, it must guard the morphic world to
ensure that communication with it is carried out in the root scope. Only this
way world-scoped morphs can safely add and delete themselves as well as
ulterior communicate with a root-scoped owner.

37

3. Experimenting with Worlds

| m w1 m1 |

m := Morph new.
m position: 50@50.

"Display the morph in a world"
m openInWorld.

"Obtain a fresh world to experiment in"
w1 := DWorld current sprout.

"Locally experimenting with another morph"
w1 eval: [
m1 := Morph new.
m1 position: 20@20.

m1 color: Color yellow.

"Only visible in experiment"
m1 openInWorld.

].

"A long time later... delete the morphs"
m delete.
w1 eval: [

m1 delete.
].

Listing 3.11: Experimenting with a morph

Figure 3.9.: Installing world-scoped morphs into the morphic world to allow morph-
local experiments.

38

3.4. Towards a General Purpose Worlds

That leads us to our next requirements for a Worlds mechanism, that enable
it to experiment with morphic programs or, more general, make it safe to
interact between in-worlds and normal objects:

(3) In order to make worlds scoped state visible to the user, there must be
a way to persist the worlds scoping of particular objects, i.e. of morphs, so
that it survives multiple processes or the next redraw cycle.

That allows particular objects to permanently interact with other objects
in the scope of their world and thereby expose world-scoped state and
behavior.

(4) At the same time, there must be a mechanism to guard global resources
such as the paste up morph so that interaction with them is always
conducted outside of an experiment.

Fulfilling the requirements facilitates the safe propagation of stepping im-
pulses, redraw requests and events from a “normal” parent morph to a pos-
sibly world-scoped child morph. Furthermore, it enables the communication
between a experimental child and a “normal” parent, e.g. to realize the re-
moval of the child morph from the world.

Looking closely back to our previous requirements it is worth noting that
requirements (3) and (4) are—when abstracting Morphic specialties—the
more general cases of the requirements (1) and (2) because they allow the
explicit scoping of arbitrary objects.

3.4.4. Summing up

In this subsection we will quickly summarize the requirements found for a
general purpose Worlds mechanism.

Generic Worlds dispatch

We identified a number of requirements which are important for a generic
Worlds dispatch because they ensure that it is easy to employ and to maintain.
These are pluggability, customizability, transparency, separation of concerns
and performance. In the context of a general applicable Worlds mechanism
the requirements assure that the developed mechanism is easy to roll out
and understand, adaptable and employable out of the box in a wide range of
applications.

39

3. Experimenting with Worlds

Scoping in Execution Context

From the original Worlds implementation we inherit the requirement that
Worlds-scoping should be limited in execution context. That is, capturing side
effects using Worlds always happens process locally inside blocks passed to
World#eval:. That makes sure that the range of a in-worlds execution is
limited and that the concept of Worlds remains easy to grasp for a developer.

Scoping and Non-Scoping in Space

We had to relax scoping in execution context to enable the usage of worlds
in conjunction with development tools and morphic applications. Both cases
required it to persist local world-scoping on objects in order to be able to
interact with the objects from outside their world. We call that scoping in
space (i.e. object space) as it allows for the application of worlds beyond the
boundaries of execution context.

Safely working with global resources such as the morphic world or devel-
opment tools posed the additional requirement to explicitly exclude these
resources from the participation in world-supported experiments. Thus we
proposed explicit non-scoping in space7 to safely work with these resources
from within world-scoped execution.

In this chapter we presented Worlds, a language construct which reifies the
notion of state and enables the safe experimentation within imperative object-
oriented programming languages. Further, we showed how debugging in
exploratory experiments can be supported using Worlds by enabling it to
safely revert the effects caused by an exploration. We discussed issues of the
current implementation of Worlds for Smalltalk which limit its application to
debugging and proposed a general purpose Worlds to help out.

Building on the findings the next chapter introduces DWorlds, our imple-
mentation of a general applicable Worlds mechanism.

7Which can also be seen as the explicit scoping to the top-level world

40

4. A General Purpose Worlds

The original Worlds implementation for Squeak/Smalltalk is a research pro-
totype which makes it possible to write simple, partially worlds-enabled
applications. While it has been extended in some case studies, for instance to
implement the undo functions in a graphical editor [44], it is far from being a
general purpose language extension. The reason is that the implementation
builds support for world-scoping on top of a special class hierarchy. Standard
classes, such as Collection or Morph, have to be re-based onto that class
hierarchy to give them the ability to participate in world-scoped executions.
Thus, making entire applications Worlds-compatible in Warth et al.’s Worlds
for Smalltalk requires major changes in already existing class hierarchies. That
is cumbersome and poses the risk of breaking existing behavior.

In this chapter we present DWorlds, an implementation of Worlds that pro-
vides Worlds-scoping as a pluggable, general purpose language feature. We
highlight the key aspects of the implementation such as the general purpose
Worlds dispatch (section 4.1) and the coexistence of normal and in-worlds
behavior (section 4.2). The latter allows us to implement the core of the mech-
anism in the presence of a global Worlds dispatch (section 4.3). Furthermore,
we propose both a technique and an algorithm which enable the explicit
spatial scoping and non-scoping of objects (section 4.4).

4.1. Worlds Dispatch

To support worlds scoping of arbitrary objects, an implementation must im-
plement a Worlds dispatch, that is a mechanism to redirect access to object state
through the current world. In the following we present a language level solu-
tion to the Worlds dispatch which employs the reflective facilities of Smalltalk
to change object state access in a Worlds compatible manner. To start with,
however, we will quickly introduce the facilities Smalltalk provides to access
state.

41

4. A General Purpose Worlds

4.1.1. Object State in Smalltalk

Basically, Smalltalk facilitates access to object state through primitives as well
as a number of built in primitive methods1. Thereby it distinguishes between
two kinds of object state: Instance variables and indexed fields. Whether an
object holds instance variables, indexed fields or both depends on its class
definition (cf. listing 4.1).

Object subclass: #Person
instanceVariableNames: 'name age pet'
classVariableNames: ''
poolDictionaries: ''
category: 'DWorlds-Tests'

ArrayedCollection variableSubclass: #Array
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: 'TextConstants'
category: 'Collections-Sequenceable'

Listing 4.1: Definitions for fixed length Person and variable length Array classes

The majority of classes including Morph, Inspector and the Person class
shown in listing 4.1 are fixed length classes, which means, their instances hold a
fixed number of instance variables. Smalltalk exposes instance variables state
via the reflective methods Object#instVarAt: and Object#instVarAt:put:.
Additionally, it employs direct inlining of instance variable reads and writes in
methods (see listing A.1 in Appendix A). Variable length classes hold a number
of indexed fields in addition to whatever instance variables they contain
(see definition of Array in listing 4.1). Accessing indexed fields is realized
through the methods Object#basicAt:, Object#basicAt:put:, Object#at:
and Object#at:put:, respectively (refer to listing A.2 in Appendix A).

Summing up, six built in state accessors as well as direct instance variable
reads and writes make up the state access in Smalltalk.

4.1.2. Dispatching State Access

To implement a Worlds-compatible state lookup for the built state accessors,
the methods must be altered to function in a worlds-aware manner. A naive

1Primitives offer a way to execute low level operations in Smalltalk directly by the vm rather
than evaluating them in a method. To get to know more about primitives and Smalltalk
open a Squeak image of your choice and browse Object class#whatIsAPrimitive.

42

4.1. Worlds Dispatch

approach to realize that, is to create an indirection which dispatches the
method invocation to the objects record in the currently active world. List-
ing 4.2 exemplifies this approach for the method Object#instanceVarAt:.
As shown in the listing, the original methods Object#instVarAt: got re-
named to #originalInstVar At:. Additionally, the method #instVarAt:
invokes #originalInstVarAt: either on the current world’s record for the
object or the object itself in case no world is active.

Object#originalInstVarAt: index

<primitive: 73>
"Access beyond fixed variables."
^ self basicAt: index - self class instSize

Object#instVarAt: index
"Dispatching to the working copy of myself in the current
world if a current world exists"

(DWorld current) ifNotNilDo: [:w |
^ (w changeFor: self)

workingCopy originalInstVarAt: index].

^ self originalInstVarAt: index

Listing 4.2: Rewritten Object#instVarAt: which dispatches instance variable reads
through the currently active world (if any)

Direct instance variable access is not dispatched through methods. Instead,
it is inlined by the Smalltalk compiler and delegates directly to the underlying
virtual machine. As a result, it cannot be intercepted on the language level.
Demanding instance variable access via an indirection (i.e. through accessors)
would in theory be a solution. In practice though, it would require a major
rewrite existing functionality as direct instance variable access is widely used
by most classes in Squeak/Smalltalk2.

To still be able to dispatch direct instance variable access, the Squeak com-
piler needs to be extended to rewrite direct instance variable access as method
invocations. That is basically what Warth et al. do and what we already de-
scribed in section 3.1.4. A slight difference, however, exists: A general purpose

2 The Morph class for instance—the core of the Morphic UI framework—defines seven instance
variables which are directly accessed 330 times. Numbers taken from a Squeak/Smalltalk
4.1 image

43

4. A General Purpose Worlds

Worlds compiler must effectively transform most classes in the system rather
than cherry picking only a few of them. That leads to the fact that the pro-
posed solution would not work when being rolled out on a global scale.

4.2. Coexistence of In-Worlds and Normal Behavior

For our implementation of Worlds we employ3 an approach presented by
Renggli and Nierstrasz in [31]. It enables the coexistence of transformed and
untransformed code. Thereby it allows us to execute worlds-specific behavior
in the event of an nested-world execution, while using the original behavior
if the program execution happens in the top-level world.

4.2.1. The DWorlds Compiler

The core of the implementation is the DWorldCompiler compiler, a special
compiler which recompiles methods in the Squeak/Smalltalk image to a
special nested-world form. We refer to these methods as in-worlds methods
and the behavior executed by them as in-worlds behavior to separate them
from the original methods and normal behavior4.

The compiler produces transformed in-worlds methods, having method
names prefixed with a __dw__ and thus distinguishable from their normal
counter parts. All message names used in an in-world method get transformed
to their in-world equivalent. That makes sure in-worlds execution is transitive.
Additionally direct instance variable access is dispatched to the in-worlds
form of #instVarAt: and #instVarAt:put: (refer to listings 4.3 and 4.4). As
a result, in-worlds methods dispatch state access to the currently active world.

In addition to the generation of in-worlds methods the compiler transforms
source code inside DWorld#eval: blocks of normal methods applying the
same transformations as in in-worlds methods. As it can be seen in listing 4.5,
it thereby generates the entry points that start the worlds-scoped evaluation.

3In fact, our implementation of Worlds is not related to the original Worlds implementation at
all. Instead it is in parts based on Stefan Marr’s port of the original transactional memory for
Smalltalk implementation. Marr’s implementation can be found at http://ss3.gemstone.
com/ss/LRSTM.html while the version by Renggli and Nierstrasz is located at http://
source.lukas-renggli.ch/transactional.html.

4That is not 100 percent correct, as a top-level world is—as previously mentioned—always
active. Yet, it makes it easier to distinguish normal execution and execution with world-
scoping semantics.

44

http://ss3.gemstone.com/ss/LRSTM.html
http://ss3.gemstone.com/ss/LRSTM.html
http://source.lukas-renggli.ch/transactional.html
http://source.lukas-renggli.ch/transactional.html

4.2. Coexistence of In-Worlds and Normal Behavior

meAndMyPet

^ name,
' and ',
pet name.

Listing 4.3: Source of #meAndMyPet

__dw__meAndMyPet

^ (self __dw__instVarAt: 0) __dw__,
' and ' __dw__,
(self __dw__instVarAt: 1) __dw__name.

Listing 4.4: Method #meAndMyPet after transformation by the DWorlds compiler

meAndMyPetPartlyEvaluateInWorld

| world myName |
world := DWorld current sprout.
myName := name.

world eval: [
^ myName __dw__,
' and ' __dw__,
(self __dw__instVarAt: 1) __dw__name.

].

Listing 4.5: A normal method which got only statements in a DWorld#eval: block
transformed by the DWorldCompiler compiler

Usually, the Squeak/Smalltalk compiler gets invoked whenever methods
are changed or code is evaluated. Upon invocation it delegates these requests
to a parser, which parses the source code into a abstract syntax tree (ast)
and returns the top-level node of the tree (see figure 4.1). From that tree, a
compiled method is generated which can either be executed or installed in
the respective slot of a class’ method dictionary.

The DWorldCompiler utilizes the basic compiler infrastructure provided by
Squeak/Smalltalk but extends it with an additional transformation step before
the actual ast representation of the source code is returned. To realize this
it uses the refactoring browser compilation and transformation tools [33]. In
the course of that thesis, these had to be resurrected to work with newer ver-
sions of Squeak/Smalltalk. DWorldTransformer, a subclass of RBSemantic-

45

4. A General Purpose Worlds

:Compiler :Parser

n + 2: parse:
 class:
 category:
 noPattern:
 context:
 notifying:
 ifFail:

n + 1: parser

...

n: translate:noPattern:ifFail:
n: parse:in:notifying:
n: evaluate:in:to:notifying:ifFail:logged:

Figure 4.1.: Relationship between parser, compiler and other classes in Squeak/Small-
talk visualized in a uml collaboration diagram

Annotator is responsible for the ast transformation. It is a program node
visitor which traverses the different elements of the abstract syntax tree. Vari-
ous methods in the class are responsible to transform particular ast elements
into their in-worlds specific form if needed. The method acceptMethodNode:
shown in listing 4.6, for instance, accepts the root method node to give in-
worlds methods to their in-worlds names.

acceptMethodNode: aNode
super acceptMethodNode: aNode.
self fullTransformation ifTrue: [
aNode selector: (aNode selector asDWorldsSelector)

].

Listing 4.6: Method in the DWorldTransformer realizing the transformation of in-
worlds method names

The transformer operates in two modes, a full and a local transformation
mode. In the full transformation mode it transforms all method elements to
create an in-worlds method. In the local transformation mode it performs
the transformation on the arguments of DWorld#eval:, that is world-scoped
blocks, only.

46

4.2. Coexistence of In-Worlds and Normal Behavior

Table 4.1.: Annotations to control the generation of in-worlds methods

annotation description

<atomicDoNotTransform> use this method as an in-worlds method and
do not transform it

<atomic: aSym> use the method with the symbol aSym in place
of this method and transform it

<atomicUseUntransformed: aSym> use the method with the symbol aSym in place
of this method and perform no transformation

4.2.2. Customizing In-Worlds Behavior

The generation of in-world methods can be customized through source code
annotations5 in their untransformed originals. The annotations serve two
purposes: Limiting the scope of in-worlds execution and providing alternative
in-worlds behavior. Table 4.1 summarizes the three available annotations.

The annotation <atomicDoNotTransform> instructs the compiler to install
the original untransformed method in place of the in-worlds method. Thereby
it effectively limits the range of the in-world execution. It is primarily used
to guard the Worlds core, including its api methods, to make sure that it is
never accessed in the scope of a World (cf. listing 4.7).

atomicInstVarAt: anInteger
<atomicDoNotTransform>
^ self workingCopyInWorld instVarAt: anInteger

Listing 4.7: Usage of the <atomicDoNotTransform> annotation to guard the in-
worlds instance variable lookup

In contrast, the method <atomic: aSym> instructs the compiler to use an
alternative implementation for the in-worlds execution of a particular method.
Thereby it allows for changing the implementation of a particular method
in the scope of a side effect capturing world. This annotation is particu-
larly useful to implement the Worlds dispatch for state accessors such as
#instVarAt: or #at:put:. Rather than weaving Worlds functionality into
these methods, the methods get annotated to realize a different behavior in
the scope of a nested world. The method #instVarAt: for example gets re-
placed by #atomicInstVarAt: in the event of an in-worlds execution (see
listing 4.8).

5Or pragmas following the Smalltalk nomenclature

47

4. A General Purpose Worlds

instVarAt: index
"Primitive. Answer a fixed variable in an object [...]"

<primitive: 73>
<atomic: #atomicInstVarAt:>
"Access beyond fixed variables."
^self basicAt: index - self class instSize

Listing 4.8: Usage of the <atomic:> to assign an alternative instance variable lookup
method for the in-worlds execution

The third annotation is <atomicUseUntransformed: aSym>. It is rarely
used, because it can be realized as a mixture of a <atomic:> annotated orig-
inal method and a <atomicDoNotTransform> annotation on the referenced
alternative behavior. The annotation instructs the compiler to use an alter-
native in-worlds behavior for a given method and tells it not to perform
any transformations on the method. One scenario we used the annotation in,
was to fix the reflective execution of message sends via #perform:with: and
friends.

Some programs and frameworks, first and foremost Morphic, make inten-
sive use of reflective message sends (cf. listing 4.9). These would normally
break the in-worlds execution, as they would send a normal selector from
the scope of a world. To fix that behavior, the message selector passed to
#perform:with: must be transformed to its in-worlds form before it is ac-
tually sent to the method. That was realized using an indirection with the
help of <atomicUseUntransformed: aSym> (see listings A.3 and A.4 in Ap-
pendix A).

reflectiveBar

"Is not correctly translated to the respective
in-worlds behavior"
^ self perform: #bar

Listing 4.9: A reflective message send which breaks the in-worlds behavior

Table 4.2 summarizes the three available annotations and their impact on
the in-worlds behavior of annotated methods.

48

4.3. Core Implementation

Table 4.2.: The impact of annotations on method generation (and
execution)

annotation behavior variationa transformb

<atomicDoNotTransform> no no
<atomic: aSym> yes yes
<atomicUseUntransformed: aSym> yes no

a behavior variation possible to derive in-worlds behavior b transformation
done when deriving in-worlds behavior

4.3. Core Implementation

Given the customizable two-layered approach, which clearly separates in-
worlds and normal behavior, it is quite straight forward to implement the
core of DWorlds. State accessors such as #instVarAt: get annotated to be
replaced with special in-worlds behavior. That in-worlds behavior delegates
state access to the Worlds core classes (cf. listings 4.8 and 4.7). At the same
time, in-worlds reflective state accessors and Worlds api methods are guarded
using <atomicDoNotTransform> annotations. That makes sure that Worlds
core functionality gets never executed in the scope of a world.

4.3.1. Architecture

The architecture of DWorlds is shown in figure 4.2. It closely resembles the
architecture Renggli and Nierstrasz used to implement transactional memory
for Smalltalk [31]. In the center of the implementation is the DWorld, the
incarnation of a world. It manages world-local side effects and gets referenced
in a process local currentDWorld variable when the world is currently active.
Additionally it has a parent world unless it is the top-level world.

Operation wise it implements the Worlds api we described in section 3.1.2.
Thereby, it offers facilities to create a new child world via #sprout, merge
the changes into the parent world via #commit and evaluate code scoped
to it using #eval:. Furthermore, it offers a class side method which can
always be used to obtain the process local current world. A number of other
methods manage the world-local state diff to the parent scope (either another
experimental world or the top-level world). They can be employed both to
query the in-worlds state of a particular object and to register custom changes.

49

4. A General Purpose Worlds

DWorld Change

changes

ObjectChange CustomChange

Object

*

original

1 1

previous

1

working

Process 0..1

currentDWorld current
sprout
eval:
commit
changeFor:
addChange:
createChange:
hasChange:

0..1parent

apply
hasChanged
hasConflict
isReversible

Figure 4.2.: The architecture of DWorlds visualized in a uml class diagram

4.3.2. Change Model

The change model distinguishes between two kinds of changes: Object changes
and custom changes. Object changes are represented as instances of the
ObjectChange class and incarnate world-local changes in particular Smalltalk
objects. They hold references to the original state of an object, the world-local
working copy of the object and the object at the time the change was created
(see figure 4.2). Using these three different objects an object change imple-
mentation is able to ensure the consistency properties Worlds longs for (cf.
section 3.1.2). It is worth noting that DWorlds does not perform any kind of
object-local caching as the original Worlds implementation does. Instead the
world-local state of an object must and is always be queried through the active
world. The interaction needed to realize the in-worlds lookup of a instance
variable value is shown in figure 4.3.

Custom changes allow it to capture side effects that lie outside the Small-
talk image6. Operations on the external file system for instance are often
irreversible and can be implemented as a CustomChange. During the commit
of a world, custom changes are handled in a different way than object changes.
Rather than committing the change and causing the destructive operation, the

6Something, the original Worlds implementation is unable to deal with.

50

4.4. Spatial Scoping

:Object

Processor

n + 2 : activeProcess

n + 1: workingCopyInWorld

...

n: atomicInstVarAt:

:Process
n + 3 : currentDWorld

:DWorld

n + 4 : changeFor:

:ObjectChange

n + 5 : working

working:Object

n + 6 : instVarAt:

Figure 4.3.: uml collaboration diagram showing the interaction of different DWorlds
components to realize the in-worlds lookup of an instance variable

change is carried over to the parent world and eventually committed when
the top-most non-top-level world commits.

4.4. Spatial Scoping

The previous chapter emphasized the need to perform spatial scoping of
experiments in addition to the usual execution context based scoping in
DWorld#eval: blocks. We identified two main use cases for spatial scoping:
Using Worlds in the context of Morphic and—more importantly—debugging
and auxiliary tool support demand the ability to persist the world-scoping of
particular objects. Only this way it was possible to safely interact with them
from unscoped objects such as development tools or the morphic world. In
the context of Morphic we highlighted that particular global resources exist
which must be explicitly not-scoped in order to safely use them from inside a
world-scoped execution.

The Worlds mechanism we presented in the previous sections is able to cut
off in-worlds execution through source code annotations. Thereby it allows
in-world scoping in space by explicitly unscoping particular methods and
eventually classes such as the class DWorld. However, it fails to satisfy more
special case scenarios such as explicit per-object scoping and non-scoping.

51

4. A General Purpose Worlds

MethodWrapper
mclass
bytes
clientMethod
sourceCode
1
2

OrderedCollection class

methodDict
…

MethodDictionary
#removeFirst
…

removeFirst
self emptyCheck.
…

#[17 68 …]CompiledMethod
mclass
bytes
sourceCode
1

#emptyCheck

118567696

#receiver:

Figure 4.4.: Method wrapper installed on the #removeFirst method of the class
OrderedCollection. Taken from [6].

In this section we will show how such functionality can be realized using
method wrappers [6], a technique first introduced by Brant et al. Further, we
present an algorithm which is employed in method wrappers to realize the
safe interaction between diversly scoped objects.

4.4.1. Method Wrappers to the Rescue

Method wrappers [6] wrap the actual method in the method dictionary of a
class. Thereby they allow it to execute code before, after or in place of the orig-
inal method. This works because methods, classes and method dictionaries
are plain objects in Squeak/Smalltalk.

When installed into the respective slot in a method dictionary a method
wrapper replaces the original method. At the same time, it holds a reference
to the original method, which is often called clientMethod. Looking up the
method in the method dictionary now returns the wrapper, which can—but
is not obliged to—forward the method invocation to the original method
(compare to figure 4.4 visualizing the relation).

Method wrappers have seen a wide range of employment, from instru-
mentation of test cases [6] to the implementation of aspect-oriented [14] and
context-oriented [24] language features. In our case they prove useful as they
allow us to instrument objects without the need to change an object’s identity
or destructively modify (e.g. transform) its original behavior.

52

4.4. Spatial Scoping

4.4.2. Reconstituting Explicit Scoping

Based on the scoping information provided by a registry, we employ method
wrappers to reconstitute the scoping for explicitly scoped objects. Upon a
scope change, we additionally scope method arguments and method return
values explicitly to ensure clear boundaries between diversely scoped objects.

Three properties are crucial for the underlying scope reconstitution algo-
rithm. The contextual scope is the process local world active for a particular
execution. The current local scope is the scope from which an object invokes
methods on itself or other objects. It is either the global scope in case a normal
method is accessed or the contextual scope at the time the invocation happens
in case the invocation targets an in-worlds method. Finally the explicit scope of
an object is the world it was pinned to and in which it should be evaluated.

Based on the three properties the basic algorithm is defined as follows:

#0 Let o be the current object, args the method arguments, c the current
local scope, e the explicit scope of o and m the original method.

#1 If e is not set or e equals c invoke wrapped method and return the
method result (perform a quick return to skip the algorithm when no
scoping is required).

#2 Explicitly scope args to c unless they are already explicitly scoped.

#3 Reconstitute the explicit scope e.

#4 Invoke m in the scope of e7. Let r be the result of the method invocation.

#5 Explicitly scope r to e unless it is already scoped.

#6 Reconstitute the previous scoping c.

#7 Return r.

A few things are noteworthy about the algorithm. The algorithm activates
only if there is a scope mismatch between the current scope and the explicitly
specified scope (step #1). Before invoking the method, it locally establishes
the explicitly defined scope (step #3). Later, it reverts the scope change after
the behavior was executed (step #6).

Furthermore, the algorithm fixes the scope of method arguments and the
return value by explicitly scoping them to the scope they originated from

7That might require to switch from the in-worlds version of the method to the normal version
or vice versa.

53

4. A General Purpose Worlds

Explicitly scoped objects

top-level world scoped

w1 scoped

Contextually scoped objects

m

World
1

2

3

4

subw
m

m

World

World

m

World

subw

subw

subw

subm

s

m

World

subw

s5

subm

subm

s

| m s |
m := Morph new.

“Morphic world scoped to top-level world”
World scopeTo: DTopLevelWorld instance.

w1 eval: [
 s := Morph new.
 m addMorph: s.

 World submorphs add: m.
].

(World submorphs at: 1) submorphs.
“[..., s]”

Figure 4.5.: Explicit scoping in action

(steps #2 and #5). Thereby it guarantees that scopes in object-graphs form a
transitive closures with explicitly scoped elements representing the bound-
aries of that closure. That in term ensures, that there are no surprises when
diversely scoped objects interact with each other.

Finally, the algorithm distinguishes between two kinds of objects: Explicitly
scoped and contextually scoped ones. An explicitly scoped object got its scope
fixed and interaction with the object will always happen in the explicitly
assigned scope. Contextually scoped objects are objects which not yet got
explicitly scoped. They are scoped according to the currently active world
or none if no world is active. That said, local world-scoped execution is still
possible and will work as in the original Worlds implementation. Given, of
course, that no objects participating in a world-scoped execution are explicitly
scoped in which case the execution semantics differ slightly.

Figure 4.5 shows the algorithm in action. It visualizes the different steps
throughout the addition of a morph to a morphic world and highlights the
relation between objects and their scoping. The initial piece of the code 1

54

4.4. Spatial Scoping

sets up a morph m. Next to the morph, it depicts the other important already
existing entities, World, the morphic world and subw, its list of submorphs.
2 explicitly binds World to the root scope—the top-level world—and thereby
makes it a global object. That is something which is not done, usually. Rather, a
user may assume that the morphic world is already a globally scoped resource.
Steps 3 and 4 execute in the scope of a world, w1. In step 3 , a new morph s
is created which gets added to m’s list of submorphs. Up to that point nothing
spectacular took place. Both, the list of submorphs subm and s, are introduced
contextually scoped so that the addition of s to m is not reflected outside
w1. In step 4 , however, two things essentially happen. First, the explicitly
scoped World is accessed to return its list of submorphs, subw, in the scope of
w1. As a result it is explicitly pinned to the top-level world to safely be able
to work with it from within w1. Second, m is added to the list and thereby
passed from w1 to the top-level scope attached to subw. To safely work with m
from within subw m gets explicitly scoped to w1 so that it retains its special w1
semantics. The whole operation has only one goal, which is allowing the safe
bi-directional interaction between the top-level scoped World and the morph
m and its submorphs. As soon as m exposes submorphs to World, they get
explicitly scoped so that their w1-scoping is retained 5 . Same applied when
communication was initiated from the opposite direction8.

Spatial scoping is meant to be something which is rarely used and which
should—in most cases—be transparent to the user9. However, wherever it
is used, the presented algorithm facilitates the safe interaction of diversely
scoped objects.

4.4.3. Re-enabling Local Experiments

Unfortunately, spatial scoping using the presented algorithm jeopardizes the
ability perform local in-worlds execution. The reason being, that the algorithm
gives explicit scoping to a particular worlds precedence over the presence of a
contextually active world. This leads to the fact that local experiments cannot
safely be performed as soon as an explicitly world-bound object participates
in it (listing 4.10 depicts that problem).

8Figure A.1 in Appendix A depicts the more complex bi-directional communication between
a morph and a globally scoped morphic world. It showcases both, the interaction during
the invocation of Morph#openInWorld and during a morphic world cycle.

9In fact, the way spatial scoping is used is not settled. Consequently, this thesis does not
imply any particular use of it. What it does, though, is offering a mechanism which enables
spatial scoping as such and an algorithm propagating that scoping to connected objects.

55

4. A General Purpose Worlds

| t w2 |

"Assume t to be explicitly scoped to the experiment w1"
t := Person new.
t pet: nil.

w2 := w1 sprout.
w2 eval: [
t pet: Pet new.

].

t pet. "a Pet, explicitly scoped to w1 rather than nil"

Listing 4.10: Local experiments broken through the introduction of the scope recon-
stitution algorithm

To re-enable the safe execution of local experiments execution context based
world-scoping must have precedence over world-scoping in object space. We
realize this by re-defining the explicit scope e for local experiments and re-
taining the contextual scope through the invocation of global resources. To
start with we extend the original rescoping algorithm with an additional step
before the quick return (step #1):

#0-1 Let cctx be the contextual scope.

#0-2 If e is set and e and cctx are both local experiments refine e to cctx.

Additionally we change step #3 of the algorithm to keep the contextual
scoping when global resources are invoked from within an experiment:

#3 If e is an experimental scope reconstitute the scope e.

The extension of step #3 conserves the currently active scope when global
objects are invoked from within experiments. This is possible because the
in-worlds behavior can simply be cut off by switching the normal execution
behavior. As a result we execute the normal object behavior while a world
remains contextually active10. Whenever the normal behavior initiates the
communication with a world-scoped object we can reconstitute the contex-
tually active world rather than the world the object was explicitly scoped to.
Thereby we allow the world-scoped object to participate in the currently active
experiment rather than the one it was originally pinned to.

10That is what the Worlds core does, too

56

4.4. Spatial Scoping

Table 4.3.: Scope variations and effective local scope transitions
as performed by the final rescoping algorithm

source scopes target scopes

locala contextb explicitc locala contextb
effective local

transition

global global none global global global → global
w1 w1 none w1 w1 w1 → w1

global w1 w1 w1 w1 global → w1

global w2 w1 w2 w2 global → w2

w1 w1 global global w1 w1 → global
w2 w2 w1 w2 w2 w2 → w2

a local scope in which the object (caller or receiver) operates in
b contextual scope active (e.g. scope active in process local variable)
c explicit scope assigned to an object

This extension gives explicit scoping of objects two flavors: Objects explicitly
scoped to the top-level world are always scoped to it. Entities explicitly scoped
to a particular nested world get scoped to the world when no other world is
contextually active. In the presence of a contextually active world, however,
they get scoped to that world instead.

Section A.3 in appendix A shows a complete picture of the final scope
reconstitution algorithm along with an implementation of the algorithm for
Smalltalk (cf. listing A.5). Furthermore, table 4.3 summarizes the specialties
of the algorithm regarding scoping and scope transitions. Finally, listing A.6
in appendix A showcases the usage of explicit scoping in Smalltalk code for a
complex example.

In this chapter we introduced DWorlds, a general purpose Worlds mech-
anism. It comprised two parts: A Worlds core implementation building on
the co-existence of normal and in-worlds behavior and a scope reconstitution
mechanism which employs method wrappers to enable spatial scoping.

57

5. Evaluation and Discussion

In this chapter we discuss DWorlds and its application to debugging. Section
5.1 evaluates the applicability of DWorlds as a general purpose Worlds. Fol-
lowing up, section 5.2 presents and evaluates the dwdbg, a debugger extension
that employs DWorlds to allow the exploration of run-time behavior in re-
versible experiments. Based on the findings section 5.3 depicts open topics
and gives directions for future work on the topic.

5.1. DWorlds as a General Purpose Mechanism

In the previous chapter we presented DWorlds, the language level implementa-
tion of a generic Worlds for Smalltalk. In this section we evaluate the provided
Worlds mechanism with regards to the requirements identified in section 3.4.

5.1.1. Generic Worlds Dispatch

The Worlds dispatch of a generic Worlds has to fulfill a number of basic
requirements which we identified in section 3.4.1 as pluggability, customiz-
ability, transparency, separation of concerns and performance. In the following
paragraphs we evaluate DWorlds with regards to these requirements.

Pluggability is given as applications do not usually need to be adapted to
use the mechanisms. Throughout the implementation and testing of DWorlds

only 56 methods in the whole Squeak/Smalltalk class system had to be
changed in order to enable major scenarios such as opening an omnibrowser
window inside an experimental world and interacting with it1. The changes
were of generic nature and—because of that—no particular application-specific
adaptions had to be made2. Furthermore, each individual change was limited

1We reference that case as Morphic is an interaction and collaboration intensive library. In
addition the omnibrowser is regarded as one of the most complex programs in the Squeak/
Smalltalk system.

2For example, classes belonging to the Morphic framework had not to be touched at all

59

5. Evaluation and Discussion

to annotating the particular method and optionally re-implementing its in-
worlds behavior. Additional techniques such as the on the fly generation of
in-worlds methods or installation of method wrappers allow applications to
use the DWorlds functionality without any kind of up-front setup.

The ability to define custom in-worlds behavior through the use of annota-
tions gives the mechanism great customizability. For instance, it made it possi-
ble to fix reflective method sends for in-worlds behavior or adapt primitively
implemented methods such as Array#replaceFrom:to:with:startingAt:
for the use in experiments. Furthermore, it makes it easy to customize the
worlds core, e.g. by implementing object-local caching of Worlds state for
subsets of the class hierarchy3.

Despite the fact that in-worlds behavior is transformed, the actual core
mechanism is transparent to the user. That is possible because the transfor-
mation is done on byte-code level, rather than in source code. Methods in
Smalltalk hold a mapping between source- and byte-code which is used to
guide the user through a method, e.g. when debugging. The compilation of
in-worlds behavior retains the mapping between the original source code and
the transformed byte-codes. Thereby it facilitates stepping through in-worlds
methods while showing the original source code. The scope reconstitution
mechanism is supposed to be transparent to user, development tools and
run-time environment.

Because the implementation cleanly separates the definition of in-worlds
and normal behavior, the separation of concerns is good as much as the
DWorlds core mechanism is concerned. That also holds concerning the instru-
mentation needed to employ the mechanism as only methods that actually
use Worlds need to be touched in order to enable it. At the same time Worlds
code is invoked on a per-object basis and only when an in-worlds execution
is actually active.

Things look differently as far as the scope reconstitution mechanism is con-
cerned. To allow explicit scoping wide ranges of classes and their respective
methods have to be instrumented using method wrappers. As a matter of
fact, the scope reconstitution mechanism can only guarantee safe experiments
when all methods of explicitly scoped objects are instrumented. As method
wrappers decorate methods on a per-class basis, the instrumentation spills over
all instances of a given object independent of whether a particular instance
requires it.

3A feature implemented in the original Worlds for Smalltalk implementation [44].

60

5.1. DWorlds as a General Purpose Mechanism

Similar to the transactional memory for Smalltalk implementation by Reng-
gli and Nierstrasz, the Worlds core mechanism slows down the performance
of state access by the factor 20

4. At the same time, however, it does not impact
the system performance when Worlds is inactive.

Again, things differ as far as the scope reconstitution mechanism is con-
cerned. As previously mentioned, the mechanism is based on method wrap-
pers which work on a per-class basis. Thus it is rolled out class wise for
each explicitly scoped entity in order to allow safe scope reconstitution. As
a result the mechanism causes a run-time overhead on instrumented classes
independent of whether worlds-scoping is used or not.

A small benchmark of the method wrapper technique for Squeak 4.1 (cf.
listing A.7) was conducted on a developer machine with 8 GByte RAM. The
execution times were 24ms (uninstrumented) and 129ms (instrumented) which
makes up for a slowdown of factor six without any of the participating objects
actually being scoped. Another benchmark which used re-scoping between
objects was run in 276ms (uninstrumented) and 27508ms (instrumented). That
accounts for a slowdown of factor 100 when explicit scoping is used heavily
(cf. listing A.8).

5.1.2. Tool Support

Given the explicit spatial scoping capabilities of DWorlds, tool support for the
inspection of world-scoped objects can be easily achieved. System tools can
safely inspect worlds-local objects, when these have been explicitly scoped to
the currently active world. When and how the explicit scoping is performed
is generally tool dependent. For use cases like inline aParticularObject
inspect statements in the code, the integration for Squeak/Smalltalk can
look like shown in listings 5.1 and 5.2, respectively.

The implementation has the drawback that the explicit scoping of an object
has to be reverted in order to be able to inspect it in other worlds or the global
scope. Whenever the interaction between tool and object is one-directional,
proxies (object wrappers in Smalltalk [6]) can solve that problem by retaining
an proxy-local world scope. However, they have the limitation that they cannot
proxy the special method class and thus fail to proxy the object to class
mapping. As a result dynamic views have to be adapted to work around
that issue. Independant of the technique being used, the internally applied

4Refer to [31] for a detailed analysis of the performance impact

61

5. Evaluation and Discussion

algorithm must remain as depicted in section 4.4 in order to allow for safe
spacial scoping.

inspect: anObject
"Open an inspector on the given object..."

<atomic:#inspectInWorld:>

self default ifNil:
[^self inform: 'Cannot inspect - no ToolSet present'].

^self default inspect: anObject

Listing 5.1: ToolSet class#inspect: method annotated to use a special in-worlds
behavior

inspectInWorld: anObject
"Open an inspector on the given object..."

<atomicDoNotTransform>

"Scope object to current active world"
anObject scopeTo: (DWorld current).

^ self inspect: anObject

Listing 5.2: In-worlds implementation of ToolSet class#inspect: which explicitly
scopes a given object before it gets inspected

5.1.3. Experimenting with Morphic

One of the drivers for spatial scoping in worlds was the application of Worlds
in the context of gui applications. Persisting the world scoping only makes
it possible to experiment with these applications because the world scoping
would otherwise not survive the next redraw cycle.

Given the explicit scoping facilities it is possible to show morphs in the
scope of a world (cf. listing 5.3). If the parent morph (in the shown example
the world) is globally scoped, the added morph gets explicitly scoped to the
given experiment when it is added to the world. This way it retains the scope
during all interactions carried out between morph and its owner. Figure A.1
in appendix A visualizes the effect of re-scoping during various standard
interactions between a experiment-bound morph and the globally scoped

62

5.1. DWorlds as a General Purpose Mechanism

morphic world. It shows the bi-directional multi-message interaction needed
to add the morph to the global morphic world. That interaction—in fact the
first message sent to the world—results in the explicitly scoping of the morph
to the experiment. Later, communication with the morph initiated by the
morphic world during a world cycle properly reconstitutes the experimental
context so that safe working with morphs in experiments is made possible.

| morph w1 |
"The morphic world"
World

"Permanently pin it to the global scope"
World markGlobal.

"Create a new experimental world"
w1 := DWorld current sprout.

w1 eval: [
morph := SimpleButtonMorph new.
morph openInWorld.

].

Listing 5.3: Displaying a morph in the scope of a world

5.1.4. Limitations

DWorlds has a few limitations that revolve around spatial scoping and the
application of method wrappers.

Method wrappers instrument methods on a per-class basis rather than on a
per-object basis. Because of that, they cannot be used to instrument methods of
classes used by the Worlds core implementation5 as accessing an instrumented
method from within the method wrapper causes an endless recursion. Other
approaches, such as proxies or object wrappers, were proposed in literature
[6] which allow to wrap behavior generically and on a per-object basis6. These
approaches, however, fail to abide the object class contract because they can
neither wrap nor intercept calls to special methods such as class. As a result,
querying the class of a wrapped object through an object wrapper returns the
wrapper class rather than the class of the wrapped object.

5These classes include, among others, Array, Dictionary, OrderedCollection, Write-
Stream and Object

6For instance using the become: mechanism in Smalltalk

63

5. Evaluation and Discussion

Figure 5.1.: dwdbg in the button bar of the Squeak/Smalltalk debugger (highlighted
in red)

For reasons yet to be investigated, current distributions of Squeak/Smalltalk
have a number of issues with method wrappers which limit their large-scale
employment. Squeak 4.1 for instance would sporadically dead lock when
method wrappers are widely used. Support for method wrappers in current
versions of Pharo/Smalltalk—originally a branch of Squeak—is severely bro-
ken. To exemplify that, Pharo 1.3 would neither recognize wrapped methods
nor their original implementation in a number of situations, e.g. inside the
execution performed by the morphic ui cycle.

In the context of the DWorlds prototype for Squeak 4.1 the problems could
partially mitigated by excluding a number of methods from being instru-
mented. These include methods responsible for event processing on Morph
and all methods on Object. However, even with these adjustments made
the system would rarely deadlock or fail with primitive errors when method
wrappers are widely enrolled7.

5.2. Reversible Experiments Using DWorlds

Over a long detour via “the generic Worlds mechanism”, we finally arrived
back at our original topic: Debugging. In this section we take the chance and
present a prototype of a Worlds-enabled debugger, the DWorlds experimenta-
tion debugger (dwdbg). It implements the experimentation model introduced
in section 3.2 and thereby allows us to safely comprehend run-time behavior
in reversible explorations.

5.2.1. The dwdbg Debugger Extension

The Worlds-enabled debugger is a extension of the class Debugger, the stan-
dard Squeak/Smalltalk debugger. It introduces a new button to access the
experimental functionality (shown in figure 5.1). Upon click, the button ex-
poses a context menu which can be used to control the current experiment or
start a new one (cf. figure 5.2). Menu entries in the experiment context menu

7E.g. on morphic applications

64

5.2. Reversible Experiments Using DWorlds

Figure 5.2.: Context menus exposed by the dwdbg debugger extension: During an
active experiment, no active experiment and when no world is active (from left
to right)

link to the debugger which implements the respective experiment operations
as instance side methods.

The extension maintains a stack of started experiments which is stored as a
process local variable and kept as long as the debugged program is running.
The currently running experiment is the stack top. Each experiment is an
instance of DExperiment. DExperiment and its operations closely reassem-
ble the experimentation model described in section 3.2.1. Each experiment
resorts to the debugger to perform the execution context reset (the method
Debugger#restart serves as a basis for that). Figure 5.3 summarizes the main
components that make up the dwdbg.

The debugger implementation incorporates two additions to the earlier
introduced experimentation model. Foremost it deals with explicitly scoped
objects to let them safely participate in exploratory experiments. Whenever
a new experiment is started or an existing experiment is reset, it rebases all
objects explicitly scoped to the previously active world to the newly activated
experimental world. Second, the debugger implementation introduces robust
semantics for the scoping of explorations in local and global experiments.

5.2.2. Local and Global Explorations

As already introduced in section 2.3.2 there is the distinction between local
and global explorations. Most experimental explorations are local, that is they
are tied to the execution context they are started in. Local experiments have the
sole purpose of understanding a particular method by observing the behavior
triggered by executing it. Thus they are finished as soon as the actual method
returns which can happen either because the user steps out of it or because
the program is resumed and proceeds beyond the method boundaries. In

65

5. Evaluation and Discussion

DExperimentStack DExperiment

experiments

DLocalExperiment DGlobalExperiment

*

Process

0..1experimentStack

activate
activatePrevious
discard
reset
start
commit

ContextPart

1startContext

DWorld

1previous 1base

0..1

current

Debugger
discardExperiment:
resetExperiment:
startLocalExperiment
startGlobalExperimen
commitExperiment:

Figure 5.3.: The dwdbg implementation of the experimentation model

any case local experiments must be properly cleaned up when the execution
context in which they were created is destroyed.

Some experiments are inherently not local as they are tied to and based on
a particular application state only. We called these experiments global. Good
examples of global experiments can be found in the area of gui application
comprehension. State changes in a gui application can be triggered both by
user interactions or internal stepping mechanisms. Often it is desired to ob-
serve such an application starting from a particular well-defined point in time
to understand the impact of upcoming user interactions or changes during
periodic stepping (cf. section 2.3.2). To be able to support global experiments,
the Worlds-enabled debugger must allow it to start and reset them in a well-
defined manner.

Same as local experiments, global experiments are started from within a
particular execution context in a halted application. The difference, however, is
that the experiment survives the destruction of its start context which makes

66

5.2. Reversible Experiments Using DWorlds

BlockClosure > ensure: [
 experiment commit.
]

...

 MyObject > fooBar

 MyObject > foo

call stack

...

e : DWorldExperiment

startContext

step
out

Figure 5.4.: Enabling locality of experiments

it possible to undo its side effects at any later point during the program
execution.

Implementation

To implement local experiments dwdbg manipulates the call stack upon the
start of a local experiment. It introduces an additional context around the
start context of the experiment. Via that context the changes captured in a
local experiment get commited as soon as the user steps out of the context the
experiment is based on (see figure 5.4).

Global experiments are permitted outside the scope of their starting context.
As a result, they cannot be simply reset to their starting context as it may not
be on the call stack anymore. Still, a developer might want to be able to roll
back the execution to a well-defined context on the call stack when resetting
or discarding a global experiment. That context is often similar to the one
the experiment was started in (compare figure 5.5). The dwdbg gives users
all choices by letting them decide freely to which context on the call stack
he wants to unwind a global experiment to. It supports that procedure by
proposing contexts that are similar to the context in which a global experiment
was created (cf. figure 5.6).

In contrast to local experiments, globally defined experiments cannot be
discarded automatically. Instead the user has to manually discard or—as
desired—commit them.

67

5. Evaluation and Discussion

...

 MyMorph > stepAt:

 MyMorph > step

call stack (t)

PasteUpMorph>doOneCycleFor:

e : DWorldExperiment

startContext

 MyMorph > stepAt:

 MyMorph > step

call stack (t + x)

PasteUpMorph>doOneCycleFor:

...

<<create>> <<reset>>

time

t: <<create experiment>> t + x: <<reset experiment>>

Figure 5.5.: Resetting global experiments to a different call stack

5.2.3. Discussion

The dwdbg enables quasi deterministic re-execution of program behavior in-
side a debugging session by making local exploratory experiments conducted
during debugging reversible. Arguably that enhances run-time program com-
prehension as it allows a developer to safely re-examine program behavior he
failed to understand in the first run.

The mechanisms underlying the dwdbg are simple. Exploratory experiments
are used to denote reversible parts during a debugging session. Inside an
experiment side effects are captured in special worlds and thus are easy to
discard. At the same time Smalltalk’s reflective features are employed to
reset the call stack to the point an experiment was created. Both, resetting
the program state and the execution context, gives the user the delusion of
traveling back to the point the experiment was started whenever he decides
to re-start a exploratory experiment.

Based on DWorlds, the generic Worlds implementation presented in chap-
ter 4, an easily extensible Squeak/Smalltalk debugger and the reflective fa-
cilities of Smalltalk the dwdbg was simple and fast to realize. In fact the
implementation of the dwdbg is rather compact as it consists of around 100

68

5.2. Reversible Experiments Using DWorlds

Figure 5.6.: Asking the user for assistance when reverting a global experiment

lines of code, only. These are spread over four new classes and the existing
Debugger and Process implementations.

The experimentation model introduced in section 3.2.1 proved to be solid
and useful, too. Despite the fact it needed some minor refinements, it basically
made it straight forward to derive the dwdbg. As a result, most parts of the
debugger implementation can directly be mapped to the model and vice versa.

Most notably, however, DWorlds as a general purpose mechanism to scope
side effects in Smalltalk programs made it possible to implement support for
the repeated examination of run-time behavior basically for free—that is, with
a minimal amount of additional work needed8.

8It accumulated in around one and a half hours of implementation effort, only.

69

5. Evaluation and Discussion

5.2.4. Limitations

The dwdbg integration into the Squeak/Smalltalk debugger is in a prototypical
state and as such far from feature complete. As a result developers have to
work around a number of issues when using it.

First of all, the debugger currently requires that programs to be examined
must be started in an experimental world in order to explore them repeatedly.
One of the reasons for that is that on the fly switching from normal to the
in-worlds behavior is not implemented. That, however, is doable with the help
of the reflective facilities provided by Smalltalk. At the current point in time
developers need to foresee if they will need dwdbg-specific features. If that
is the case they have to start the program to be debugged from inside an in-
worlds execution. Furthermore, the dwdbg provides only a very loose coupling
between the experimentation features and the actual debugger ui. Arguably,
a more sophisticated integration into the debugger could make experiments
more tangible and, thus, would probably aid debugging in experiments.

5.3. Open Topics and Future Work

Given both DWorlds and its application in the dwdbg a number of open topics
remain.

5.3.1. On DWorlds

Concerning DWorlds different directions exist to enhance the implementation
as a general purpose Worlds. Further research efforts can investigate if parts
of DWorlds can be implemented on the virtual machine level. Especially the
explicit scoping mechanism would benefit from such an implementation as a
vm-level implementation would allow it to keep the scope mapping closer to
the actual scoped object, for instance as a tag on the object itself. That in term
could enable a faster implementation of the scope reconstitution mechanism.

Additionally, more time can be spent in the area of per-object wrappers to
come up with vm-supported perfect proxies which can wrap special methods
such as class, too. A perfect proxy mechanism would allow more powerful
instrumentation, probably at the expense of some vm-internal performance
optimizations. It would not only benefit DWorlds but also other applications
such as aspect- and context-oriented programming. To still be able to interact
with perfectly proxies, mirrors [5, 23] could be a great tool to employ.

70

5.3. Open Topics and Future Work

Both a vm-level rescoping mechanism and perfect proxies would allow it
to implement DWorlds safely and without method wrappers and their incom-
patibilities with current Smalltalk distributions of Squeak and Pharo.

Last but not least time and brain power can be spent to prove or correct
the scope reconstitution algorithm employed in the general purpose Worlds
prototype. Up till now it has been proven useful but not yet correct.

5.3.2. On the dwdbg

Future work on the application of DWorlds for debugging can span various
topics. Foremost it can focus on eliminating the previously mentioned issues
and providing general enhancements to the dwdbg. In addition, it must in-
volve actual user studies to prove or disprove the usefulness of the debugger
extension empirically.

In the current version of the dwdbg Worlds is employed solely as a mean to
manually make program explorations reversible. Worlds opens the field for a
whole lot of other applications such as the comparison of object state before
and after method execution or the parallel execution of a piece of code based
on different prerequisites. Additionally it represents a efficient way to perform
incremental checkpointing. That could make it possible to semi-automatically
safe-point a debugging session in regular intervals or special occasions such
as manually carried out step operations.

Future work should also review these applications to come up with more
potential improvements for the comprehension of running programs. Finally,
it should examine the application of the dwdbg in the context of multi-process
applications, a interesting topic that has been willingly ignored thus far.

In this chapter we evaluated DWorlds as a general purpose Worlds mecha-
nism and its application to debugging. In that course we introduced the dwdbg,
a debugger that employs DWorlds to allow quasi deterministic re-execution
of behavior inside a debugging session. We presented some of the details of
the debugger implementation and showed how both local and global exper-
iments can be conducted using the debugger. As part of the evaluation, we
presented limitations of DWorlds and the dwdbg and summarized future work
on the topic. In the context of DWorlds we highlighted the need to dispose
method wrappers as a technique to realize spatial scoping, either by employ-

71

5. Evaluation and Discussion

ing vm-support or perfect proxies. For dwdbg, we identified four important
open topics: Improving the debugger, empirically asserting its usefulness, re-
searching advanced applications of DWorlds in the dwdbg and investigating
the debuggers application in multi-threaded programs.

72

6. Related Work

This chapter summarizes work adjacent to this thesis. It will present tree
distinct areas: Debugging (section 6.1), encapsulating change (section 6.2) as
well as perspectives and spatial scoping (section 6.3).

6.1. Debugging

Two limitations restrict the utility of most debuggers for program comprehen-
sion: High setup cost to inspect a particular part of the system as well as the
inability to safely re-examine behavior. For both, related work has presented
partial solutions which we go through in this section.

Rather than understanding the program as a whole, debuggers are often
employed to examine certain behavioral characteristics in detail or to under-
stand a particular code section [32, 41]. To do so, however, a user must step
through the execution of a program to isolate the particular part of interest.
That in term can be time consuming and complicated due to the lack of entry
points into the system that can be used for debugging [41] as well as the lack
of expressiveness of the user-debugger interaction [32].

To mitigate the high setup costs for stepping into a particular code section,
Steinert et al. advocate the use of test-cases as entry points for debugging
sessions [41]. They show how automatic analysis of a test suite can pick up
tests that cover a particular method of interest. Furthermore, they present an
ide extension that runs a appropriate test and debugs right into the execution
context associated with the method [41].

Ressia et al., in contrast, identify a gap between questions developers ask
about a running software system [36] and the possibilities of conventional
debugging tools to help answering them [32]. That lack of expressiveness
leads to the fact that certain behavioral characteristics can be hard to isolate
and observe in conventional debuggers.

To improve the situation they propose object-centric debugging as a novel
approach to interact with a program at run-time [32]. In contrast to traditional
debugging tools, which interrupt a program when certain positions in the

73

6. Related Work

source code are reached, object-centric debuggers can interrupt a program
when object interactions or state changes on objects occur. To facilitate this
approach, the user sets break points on state-related operations (e.g. write
or read of a certain instance variable) and interactions (e.g. message send
to another object) with respect to certain objects. As objects in a running
system are the subjects of breakpoints, the technique requires a program to
be running and already interrupted. Thus, object-centric debugging is an
extension to normal debugging approaches and could nicely be employed on
top of the dwdbg.

Mostly driven by the need to fix hard to reproduce bugs, a number of
techniques have been developed that enable deterministic re-examination of
behavior executed during a debugging session. Some facilitate recording and
replaying of recorded executions [16, 28, 39] on to a running program. Others
rely on recording program actions only to reconstruct the executed behavior
after the program died [22, 23] while a few approaches allow a developer
to manually create checkpoints during a debugging session to restart the
execution from there [10].

Record and replay debuggers capture instructions executed by a program or
messages sent in between subsystems to allow replaying them in case of an
error [28]. Srinivasan et al. for instance realize re-execution of behavior on
Linux operating systems using a mixture of snapshotting program state and
record and replay [39]. They employ the fork command [25] to snapshot
running programs and replay recorded instructions on top snapshots to allow
re-examination of behavior on the running program [39].

Back-in-time debuggers capture the full execution trace through the run of
a program [22, 23]. Using that trace, they can reconstruct the program state
at any point in the execution of the program. Back-in-time debuggers do not
re-execute behavior of a program but can rather simulate its execution step-
by-step both forwards and backwards in time. They are used postmortem—that
is after the program has died—and thereby do not allow interaction with the
debugging subject in a particular execution context of interest.

Both, record and replay and back-in-time debuggers make it possible to
repeatedly examine run-time behavior, technically even in case of multi-
threading. However, they have performance as well as scalability issues as
significant parts of the execution trace have to be recorded at run-time [30,
32]. Some improvements have been proposed for both approaches [23, 39]
which, after all, only defer the problems [32]. As a more important drawback,
though, the approaches fail to support local re-examination on top of running

74

6.2. Encapsulating Change

programs. That renders them impractical for the understanding of run-time
behavior as proposed in this thesis.

Checkpoint debugging [10] is an approach that allows for the re-examination
of behavior by letting users manually indicate points during a debugging
session they want to return later. It is closest to the approach presented in this
thesis. Conventional checkpointing uses platform specific tricks to snapshot
the program state whenever a new checkpoint is created [11]. In contrast,
the application of Worlds in the dwdbg safes only changes which occurred in
between checkpoints. Thus it can be seen as a mean to perform incremental
checkpointing, which can be more space efficient if a big amount of check-
points is created. In contrast to conventional checkpointing, our solution does
not incur additional costs for snapshotting and restoring program images.
Additionally it enables the re-examination of run-time behavior in a plat-
form independent manner—by employing the ability of DWorlds to scope side
effects.

6.2. Encapsulating Change

Two different areas are concerned when talking about the encapsulation of
change: Isolating structural changes and capturing side effects in running
programs. Capturing structural changes such as the renaming of classes or
introduction of new methods is not a primary goal of DWorlds, neither is it
currently supported by the implementation. However, other approaches have
specialized on the encapsulation and modeling of structural changes.

Classboxes, presented by Bergel et al., isolate structural changes done to a
program. Thereby they make it possible to extend a software system inside
a classbox without impacting other applications that run outside of it [1]. A
classbox can be seen as a world in which the structural changes can safely be
implemented without the fear to break already running programs.

Changeboxes [9] superficially resemble classboxes. In contrast to classboxes,
though, they are first-class entities which encapsulate the semantics of struc-
tural change in running software systems. As a first class representation, a
changebox can be used to capture refactorings. Later, it makes it possible to
apply or revert these changes to support the safe evolution of in-production
software systems such as web servers [9].

Both classboxes and changeboxes focus on encapsulating structural change.
For this reason they have a slightly different scope than DWorlds. DWorlds—as

75

6. Related Work

presented in this work—aims to control the scope of side effects in running
programs. That in term is often regarded program state rather than structural
changes. Worlds as a concept generalizes that to enclose structural changes,
too. In that regard, Worlds it is closer to classboxes than to changeboxes as it
captures and isolates change, only, rather than capturing its semantics.

The idea to reify program state goes back to Johnson and Duggan who
proposed first-class stores for the GL programming language. The stores were
meant to represent “different versions of computer memory” [18]. The authors
proposed the use of first-class stores and partial continuations to capture the
remainder of a debugging session in them. In that regard, their idea is close
to the application of DWorlds in the dwdbg. First-class stores were meant to
operate in conjunction with partial continuations in order to aid the imple-
mentation of development tools in a interactive programming environment,
only. DWorlds, in contrast, is intended as a simple, general applicable mecha-
nism to control the scope of side effects. Consequently, debugging is only one
of the many areas it can be employed in.

Transactional Memory [13, 31, 35] must offer a way to capture side effects
during the execution of a particular code section with the goal to commit these
side effects with transactional semantics. These include atomicity, isolation
and consistency. In contrast to Worlds, which offers a reification of state
along with the ability to store references to different worlds inside a program,
transactional memory usually does not offer any first class representation of
transactional state. In fact, the concept of Worlds is more powerful and would
easily allow the implementation of transactional memory semantics [44].

Renggli and Nierstrasz introduced transactional memory for Smalltalk [31].
They provided a mature implementation of it as a general purpose mecha-
nism in the Smalltalk system. Consequently, our work inherited some of the
mechanisms which backed up their implementation.

6.3. Perspectives and Spatial Scoping

Smith and Ungar introduce perspectives on objects in course of their imple-
mentation of Us [38], the predecessor of today’s context-oriented program-
ming (cop) languages. The authors explore the idea that object state and
behavior depends on even these perspectives—in that regard perspectives
are similar to worlds. The difference, however, is that perspectives do not
form hierarchically structured scopes and thus cannot be consolidated using

76

6.3. Perspectives and Spatial Scoping

a commit operation. The authors also discuss the question when changes in
perspectives occur and ultimately utilize a “minimal motion policy” in their
implementation of Us. While introduced in a slightly different context, the
policy closely resembles scope changes during explicit scoping in Worlds.

The need to explicitly bind objects to a particular world, both for the sake
of tool support and gui applications, was one of the crucial insights made
in this thesis. On a similar track, Lincke et al. identified the need to explicitly
attach the layer activation in their cop [15] implementation for JavaScript
[24]. In both, Worlds and cop, the activation of a worlds-scoping or cop

layers is dependent on the perspective from within an object is perceived.
That perspective us usually tied to the current execution context but must be
persisted when objects are accessed from outside that context.

In contrast to cop layer activation, which is inherently per object, Worlds
scoping is transitive (i.e. propagates to other objects in an object graph). That
made the application of a sophisticated re-scoping algorithm in DWorlds in-
evitable.

In this chapter we presented work related to this thesis. Most notably, we
distinguished the application of DWorlds for debugging from other approaches
which facilitate the re-examination of run-time behavior. Further, we looked at
research which came to related findings such as the application of first-class
stores for debugging and the need for explicit scoping in cop.

In the following chapter we summarize the main findings of this thesis and
conclude the topic.

77

7. Conclusion and Outlook

Debuggers are often used to inspect the run-time behavior of a program in or-
der to understand the underlaying source code. They differ substantially from
conventional dynamic views as they make it possible to experience a running
program as it executes. Thereby they encourage experimental learning and
induce a deeper kind of understanding of the inspected behavior.

This work evaluated Worlds [44] to further increase the utility of debuggers
for program comprehension by allowing the safe re-examination of program
behavior during debugging. The idea was that Worlds could be employed to
capture side effects caused by stepping through a running program. By doing
so, it would be possible to simply discard these effects and, thus, make it safe
to repeatedly execute behavior inside a debugging session.

The evaluation results are two-fold: Yes, the concept of Worlds can be
employed for the purpose and no, the already existing implementation of
Worlds for Smalltalk [44], cannot be used to realize the idea. The reason for
the latter is, that it is a special purpose Worlds that works on a small number
of classes, only. To make the concept of Worlds applicable for debugging, a
general purpose Worlds implementation is needed that facilitates the scoping
of side effects for arbitrary objects. Such an implementation and its application
in a debugger for Squeak/Smalltalk are the practical results of this work.

7.1. Summary of Contributions

In the course of this thesis three major contributions were made. First, the prin-
cipal application of Worlds for debugging was documented. Second, DWorlds,
a general purpose Worlds for Smalltalk, was presented. Third, a debugger
was introduced which builds upon DWorlds to realize the safe re-examination
of run-time behavior inside a debugging session.

To start with, chapter 3 described the application of Worlds in the context of
debugging. The insight was that explorations performed during a debugging
session can be made reversible by capturing and isolating the side effects

79

7. Conclusion and Outlook

caused by them. Based on that idea, this work introduced an experimenta-
tion model which formalized the application of Worlds during exploratory
experiments. Adhering to that model makes it possible to safely re-examine
run-time behavior during debugging.

Chapter 4 presented DWorlds, a general applicable Worlds mechanism for
Smalltalk. The implementation was needed in the context of debugging in
order to scope side effects in large-scale experiments which comprise arbitrary
objects. That is something the original Worlds for Smalltalk implementation
is incapable to do. With DWorlds, we showcased a transparent Worlds mecha-
nism that got implemented using the reflective features of Smalltalk alone. We
highlighted three important aspects of the implementation. To begin with, we
presented a generic Worlds dispatch which allows us to scope side effects in
arbitrary classes. Further, we described a two-layered approach which cleanly
separates normal and in-worlds behavior. That approach makes it possible to
customize behavior in the scope of side effect capturing worlds. Additionally,
it enabled it to safely implement the DWorlds core on top of standard Small-
talk classes. As a last important aspect of DWorlds, we depicted a mechanism
for spatial scoping of world-local experiments. That mechanism enables the
application of Worlds in gui applications and ensures the safe interaction
between diversly scoped objects. At the same time, it permits the usage of
conventional dynamic views to display objects with their in-worlds state.

As the third overall contribution of this work, chapter 5 presented the
dwdbg, a debugger prototype for Squeak/Smalltalk. The debugger employs
DWorlds to capture side effects during the inspection of run-time behavior.
To do so, it reifies explorations and allows a developer to indicate parts
of a development session he might want to examine repeatedly. Based on
DWorlds, the experimentation model and the Squeak/Smalltalk debugger, the
dwdbg was simple and straight forward to implement. In its current form,
it facilitates the safe re-examination of both local program execution and
globally observable behavior.

7.2. Outlook

When implementing the concept of Worlds as a general purpose mechanism
on Squeak/Smalltalk, a number of obstacles appeared. Some, such as the
need for spatial scoping, raised implementation specific issues which could
not be mitigated completely in the course of this thesis. At the same time, the

80

7.2. Outlook

practical application of DWorlds in the dwdbg showed that the general purpose
Worlds mechanism is ready to serve real world purposes and, thus, is more
than a little toy project.

Open topics, both regarding DWorlds and the dwdbg, exist and have been
well documented in section 5.3 of this work. For DWorlds these include vm-
support and/or the invention of perfect proxies for Squeak/Smalltalk. Both
allow it to dispose method wrappers and provide a more robust implementa-
tion of per object spatial scoping. For the application of DWorlds in the dwdbg

topics revolve around a multitude of aspects. They include carrying out user
studies to assert the debuggers’ usefulness, exploiting different Worlds fea-
tures to further support program comprehension and improving the graphical
representation of the dwdbg to make the experiment metaphor more tangible.

It remains to be seen if future research continues the work on any of those
topics or whether it employs DWorlds to evaluate new applications of the
Worlds concept on Smalltalk.

81

Bibliography

[1] Alexandre Bergel et al. “Classboxes: A Minimal Module Model Sup-
porting Local Rebinding”. In: JMLC. Ed. by László Böszörményi and
Peter Schojer. Vol. 2789. Lecture Notes in Computer Science. Springer,
2003, pp. 122–131.

[2] Roland Bertuli et al. Run-Time Information Visualization for Understanding
Object-Oriented Systems. 2003.

[3] Ted J. Biggerstaff et al. “The Concept Assignment Problem in Program
Understanding”. In: ICSE. 1993, pp. 482–498.

[4] Andrew Black et al. Squeak by Example. http://squeakbyexample.org.
Square Bracket Associates, 2007.

[5] Gilad Bracha and David Ungar. “Mirrors: design principles for meta-
level facilities of object-oriented programming languages”. In: OOPSLA.
Ed. by John M. Vlissides and Douglas C. Schmidt. ACM, 2004, pp. 331–
344.

[6] John Brant et al. “Wrappers to the Rescue”. In: ECOOP. Ed. by Eric Jul.
Vol. 1445. Lecture Notes in Computer Science. Springer, 1998, pp. 396–
417.

[7] Thomas A. Corbi. “Program understanding: challenge for the 1990’s”.
In: IBM Syst. J. 28.2 (June 1989), pp. 294–306. issn: 0018-8670.

[8] Bas Cornelissen. “Evaluating Dynamic Analysis Techniques for Program
Comprehension”. PhD thesis. Delft University of Technology, 2009.

[9] Marcus Denker et al. “Encapsulating and exploiting change with change-
boxes”. In: Proceedings of the 2007 international conference on Dynamic lan-
guages: in conjunction with the 15th International Smalltalk Joint Conference
2007. ICDL ’07. New York, NY, USA: ACM, 2007, pp. 25–49.

[10] GDB Online Documentation: 4.12 Setting a Bookmark to Return to Later.
http : / / sourceware . org / gdb / onlinedocs / gdb / Checkpoint _

002fRestart.html. [Online; accesssed 2012-03-17]. 2012.

83

http://sourceware.org/gdb/onlinedocs/gdb/Checkpoint_002fRestart.html
http://sourceware.org/gdb/onlinedocs/gdb/Checkpoint_002fRestart.html

Bibliography

[11] GDB Online Documentation: Algorithms. http://sourceware.org/gdb/
onlinedocs/gdbint/Algorithms.html. [Online; accesssed 2012-03-
17]. 2012.

[12] Adele Goldberg. SMALLTALK-80: the interactive programming environ-
ment. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1984.

[13] Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory: Architec-
tural Support for Lock-Free Data Structures”. In: ISCA. 1993, pp. 289–
300.

[14] Robert Hirschfeld. “AspectS - Aspect-Oriented Programming with
Squeak”. In: NetObjectDays. Ed. by Mehmet Aksit et al. Vol. 2591. Lec-
ture Notes in Computer Science. Springer, 2002, pp. 216–232. isbn:
3-540-00737-7.

[15] Robert Hirschfeld et al. “Context-oriented Programming”. In: Journal of
Object Technology 7.3 (2008), pp. 125–151.

[16] Derek Hower et al. “Two hardware-based approaches for deterministic
multiprocessor replay”. In: Commun. ACM 52.6 (2009), pp. 93–100.

[17] Christian M. Itin. “Reasserting the Philosophy of Experiential Educa-
tion as a Vehicle for Change in the 21st Century”. In: The Journal of
Experiential Education 22.2 (1999), pp. 91–98.

[18] Gregory F. Johnson and Dominic Duggan. “Stores and partial contin-
uations as first-class objects in a language and its environment”. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. POPL ’88. New York, NY, USA: ACM, 1988,
pp. 158–168.

[19] Andrew J. Ko et al. “Information Needs in Collocated Software Devel-
opment Teams”. In: ICSE. 2007, pp. 344–353.

[20] David A. Kolb. Experiential Learning: Experience as the Source of Learning
and Development. New Jersey: Prentice-Hall P T R, 1984.

[21] Thomas D. LaToza et al. “Maintaining mental models: a study of devel-
oper work habits”. In: ICSE. 2006, pp. 492–501.

[22] Bil Lewis. “Debugging Backwards in Time”. In: CoRR cs.SE/0310016

(2003).

84

http://sourceware.org/gdb/onlinedocs/gdbint/Algorithms.html
http://sourceware.org/gdb/onlinedocs/gdbint/Algorithms.html

Bibliography

[23] Adrian Lienhard et al. “Practical Object-Oriented Back-in-Time Debug-
ging”. In: Proceedings of the 22nd European conference on Object-Oriented
Programming. ECOOP ’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 592–615.

[24] Jens Lincke et al. “An open implementation for context-oriented layer
composition in ContextJS”. In: Sci. Comput. Program. 76.12 (2011),
pp. 1194–1209.

[25] Linux Man Pages: Fork. http://linux.die.net/man/2/fork. [Online;
accesssed 2012-03-17]. 2012.

[26] John Maloney. “Squeak: Open Personal Computing and Multimedia”.
In: ed. by Mark Guzdial and Kimberly Rose. Prentice Hall, 2002. Chap. 2:
An Introduction to Morphic: The Squeak User Interface Framework,
pp. 39–68.

[27] Anneliese von Mayrhauser and A. Marie Vans. “Program Comprehen-
sion During Software Maintenance and Evolution”. In: IEEE Computer
28.8 (1995), pp. 44–55.

[28] Satish Narayanasamy et al. “BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging”. In: Proceedings of the
32nd annual international symposium on Computer Architecture. ISCA ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 284–295.

[29] Eric Osman. DDT Reference Manual. AI memo. Massachusetts Institute
of Technology, Artificial Intelligence Laboratory, 1971.

[30] Michael Perscheid et al. “Immediacy through Interactivity: Online Anal-
ysis of Run-time Behavior”. In: WCRE. 2010, pp. 77–86.

[31] Lukas Renggli and Oscar Nierstrasz. “Transactional Memory for Small-
talk”. In: Proceedings of the 2007 international conference on Dynamic lan-
guages: in conjunction with the 15th International Smalltalk Joint Conference
2007. ICDL ’07. New York, NY, USA: ACM, 2007, pp. 207–221.

[32] Jorge Ressia et al. “Object-centric debugging”. In: ICSE. IEEE, 2012,
pp. 485–495.

[33] Don Roberts et al. “A Refactoring Tool for Smalltalk”. In: TAPOS 3.4
(1997), pp. 253–263.

[34] David Röthlisberger et al. “Exploiting Runtime Information in the IDE”.
In: ICPC. 2008, pp. 63–72.

85

http://linux.die.net/man/2/fork

Bibliography

[35] Nir Shavit and Dan Touitou. “Software Transactional Memory”. In: Dis-
tributed Computing 10.2 (1997), pp. 99–116.

[36] Jonathan Sillito et al. “Questions programmers ask during software
evolution tasks”. In: Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering. SIGSOFT ’06/FSE-14.
New York, NY, USA: ACM, 2006, pp. 23–34.

[37] Michael P. Smith and Malcolm Munro. “Runtime Visualisation of Object
Oriented Software”. In: Proceedings of the 1st International Workshop on
Visualizing Software for Understanding and Analysis. VISSOFT ’02. Wash-
ington, DC, USA: IEEE Computer Society, 2002, pp. 81–.

[38] Randall B. Smith and David Ungar. “A Simple and Unifying Approach
to Subjective Objects”. In: TAPOS 2.3 (1996), pp. 161–178.

[39] Sudarshan M. Srinivasan et al. “Flashback: A Lightweight Exten-
sion for Rollback and Deterministic Replay for Software Debugging”.
In: USENIX Annual Technical Conference, General Track. USENIX, 2004,
pp. 29–44.

[40] Jamie Starke et al. “Searching and skimming: An exploratory study”.
In: ICSM. 2009, pp. 157–166.

[41] Bastian Steinert et al. “Debugging into Examples”. In: TestCom/FATES.
2009, pp. 235–240.

[42] Masaki Suwa and Barbara Tversky. “External Representations Con-
tribute to the Dynamic Construction of Ideas”. In: Diagrams. 2002,
pp. 341–343.

[43] Tarja Systä. “Understanding the Behavior of Java Programs”. In: WCRE.
2000, pp. 214–223.

[44] Alessandro Warth et al. “Worlds: Controlling the Scope of Side Effects”.
In: ECOOP. 2011, pp. 179–203.

86

Appendix A.

Additional Code Examples and
Illustrations

A.1. State Access in Smalltalk

State access in Smalltalk comprises instance variable access (cf. listing A.1)
and indexed field access (cf. listing A.2).

Person#secondName: aString

| nameInstVarIndex |
nameInstVarIndex := self class instVarIndexFor: #name.

"set name"
name := aString.

(name = self instVarAt: nameInstVarIndex)
ifTrue: ["reflective read worked"].

"reflective write"
self
instVarAt: nameInstVarIndex
put: (aString, ' the second').

name "... the second"

Listing A.1: Instance variable access in Smalltalk

| anArray |
anArray := Array new: 2. "array with two slots"

"indexed field write"
anArray at: 1 put: 'FOO'.

"indexed field read"

87

Appendix A. Additional Code Examples and Illustrations

anArray at: 1 "FOO"

"#basicAt: and #basicAt:put: could be used accordingly"

Listing A.2: Indexed field access in Smalltalk

A.2. Fixing Reflective Message Sends in DWorlds

The problem is that invoking a reflective message send in the scope of a world
would normally break the in-worlds execution chain (cf. listing 4.9). The
solution is to transform all selectors passed to #perform:with: and friends
to their in-worlds form before sending the actual #perform:with: method.
That can be done by creating an annotation-guided indirection (see listings
A.3 and A.4).

perform: aSymbol with: anObject
"Send the selector, aSymbol, to the receiver [...]"

<atomicUseUntransformed: #atomicPerform:with:>
<primitive: 83>
^ self perform: aSymbol withArguments: (Array with: anObject)

Listing A.3: Usage of the <atomicUseUntransformed:> to redirect reflective message
sends in the case of in-worlds method execution

atomicPerform: aSymbol with: anObject
"Send the selector, aSymbol, to the receiver [...]"

^ self perform: (aSymbol asAtomicSelector) with: anObject

Listing A.4: In-worlds implementation of the #perform:with: method which
adapts the message selector to its in-worlds form before it invokes the original
#perform:with: method with these arguments

A.3. Final Scope Reconstitution Algorithm

Based on the findings in section 4.4.2 and section 4.4.3 the final scope re-
constitution algorithm looks as follows (numbers have been rearranged from
previous samples):

#0 Let o be the current object, args the method arguments, c the current
local scope, e the explicit scope of o and m the original method.

88

A.3. Final Scope Reconstitution Algorithm

#1 Let cctx be the contextual scope.

#2 If e is set and e and cctx are both local experiments refine e to cctx.

#3 If e is not set or e equals c invoke wrapped method and return the
method result (perform a quick return which works in most cases).

#4 Explicitly scope args to c unless they are already explicitly scoped.

#5 If e is an experimental scope reconstitute the scope e.

#6 Invoke m in the scope of e1. Let r be the result of the method invokation.

#7 Explicitly scope r to e unless it is already scoped.

#8 Reconstitute the previous scoping c.

#9 Return r.

A.3.1. Implementation in Smalltalk

Listing A.5 shows a optimized implementation of the algorithm in Smalltalk.

dispatchTo: anObject withArguments: anArrayOfObjects

"Implementation of the scope reconstitution algorithm"

| localScoped ctxSwitch quickReturn effectiveCtx contextCtx
objectCtx argumentsScope returnValueScope args result |
self wasActive: true.

objectCtx := DWorld scopeFor: anObject.

"Quick return for contextual scoped objects"
objectCtx ifNil: [
^ self clientMethod valueWithReceiver: anObject

arguments: anArrayOfObjects.
].

quickReturn := ctxSwitch := false.

localScoped := self isScoped.
contextCtx := DWorld current.

"Enable quick return for right binding _or_ other experiment"
(objectCtx == contextCtx)
ifTrue: [quickReturn := true]

1That might require to switch from the in-worlds version of the method to the normal version
or vice versa.

89

Appendix A. Additional Code Examples and Illustrations

ifFalse: [
"Object ctx and current ctx both denote experiments
(non of them top-level world)"
(objectCtx isTopLevel)
ifTrue: [
localScoped
ifTrue: [effectiveCtx := objectCtx]
ifFalse: [quickReturn := true]]

ifFalse: [
(contextCtx isTopLevel)
ifTrue: [
effectiveCtx := objectCtx.
ctxSwitch := true]

ifFalse: [
localScoped
ifTrue: [quickReturn := true]
ifFalse: [effectiveCtx := contextCtx.

ctxSwitch := true]]]].

quickReturn ifTrue: [
^ self clientMethod valueWithReceiver: anObject

arguments: anArrayOfObjects].

argumentsScope := localScoped
ifTrue: [contextCtx]
ifFalse: [DTopLevelWorld instance].

returnValueScope := objectCtx.

args := self scopeArguments: anArrayOfObjects
to: argumentsScope.

ctxSwitch
ifTrue: [DWorld current: effectiveCtx].

[
result := anObject
perform: (self selectorFor: (self selector)

in: effectiveCtx)
withArguments: args.

result isScoped ifFalse: [
result scopeTo: returnValueScope].

] ensure: [ctxSwitch ifTrue: [DWorld current: contextCtx]].

^ result

Listing A.5: Implementation of the scope reconstitution algorithm in Squeak/Small-
talk

90

A.4. Showcasing Complex Scoping and Re-scoping of Objects

A.4. Showcasing Complex Scoping and Re-scoping of
Objects

The following listing showcases scoping in action. Furthermore, figure A.1
shows the effect of re-scoping during various standard interactions between a
expriment-bound morph and the globally scoped morphic world.

| ctx person pet petsPet |

"Pet should always be unscoped"
pet := DTestPerson new.
pet makeGlobal.

ctx := DWorld current sprout.
ctx eval: [
person := DTestPerson new.
person pet: pet.
pet name: 'Walter'.
person name: 'Klaus'.

self assert: (person name) equals: 'Klaus'.
self assert: (pet name) equals: 'Walter'.

].
self assert: (person name) equals: nil.
self assert: (pet name) equals: 'Walter'.

"Person should access unscoped walter internally"
ctx eval: [
self assert: (person meAndMyPet) equals: 'Klaus and Walter'

].

"Pin person to ctx"
person scopeTo: ctx.

"Person should evaluate in context of current world"
self assert: (person name) equals: 'Klaus'.
self assert: (person meAndMyPet) equals: 'Klaus and Walter'.

" -- "
" advanced concepts"
" -- "

" We will create a scoped petsPet to our unscoped pet"
ctx eval: [
petsPet := DTestPerson new.
petsPet name: 'Lucy'.

].

91

Appendix A. Additional Code Examples and Illustrations

self assert: (petsPet name) equals: nil.

ctx eval: [
self assert: (petsPet isScoped not).

"Scoping of petsPet is decided here:
As petsPet is passed to pet in a scoped context,
it will remain scoped to it"
pet pet: petsPet.

"Pets pet is scoped to ctx now"
self assert: (petsPet isScoped).

self assert: (pet pet name) equals: 'Lucy'.
].

self assert: (pet pet name) equals: 'Lucy'.

Listing A.6: Scoping in action

A.5. Scope Reconstitution Micro Benchmarks

Micro benchmarks used to measure the performance for the method wrapper
scope reconstitution mechanism are shown in listing A.7 (using no scoping)
and listing A.8 (using explicit scoping).

| rawTime instrumentedTime block |

block := [
5000 timesRepeat: [
| p c |
p := DTestPerson new.
c := DTestPerson new.
p name: 'Walter'.
p pet: c.

p name.
p meAndMyPet.
c age.
c name.

]].

rawTime := block timeToRun.

DWorldMethodWrapper installOn: DTestPerson.

92

A.5. Scope Reconstitution Micro Benchmarks

in experiment

in experiment

in experiment

m:SimpleButtonMorph World:PasteUpMorph

:Canvas

in experiment

global
resource

openInWorld
...

<<global>> addMorph:

addMorphFront:
addMorphInFrontOfLayer:
addMorph:inFrontOf:
...

privateAddMorph:atIndex:<<in-world>> privateOwner:

...

<<global>> startSteppingSubmorphsOf:

morphic world cycle loop
highly simpli�ed
presentation

<<in-world>> step

<<in-world>> processEvent:using:

<<in-world>>
fullDrawOn:

drawWorld:
submorphs:
invalidAreasOn:

displayWorldSafely:
displayWorld:
...

runStepMethods
...

fullDrawMorph:

...
<<global>>

...

Figure A.1.: Explicit scoping in action during the communication of an in-experiment
morph and the global morphic world

93

Appendix A. Additional Code Examples and Illustrations

instrumentedTime := block timeToRun.

Transcript
show: 'raw: ', (rawTime asString); cr;
show: 'instrumented: (instrumentedTime asString); cr.

Listing A.7: Microbenchmark not performing any actual scoping

| rawTime instrumentedTime block |

block := [
5000 timesRepeat: [
| p c |
p := DTestPerson new.
c := DTestPerson new.
p scopeTo: DWorld current sprout.
c scopeTo: DTopLevelWorld instance.
p name: 'Walter'.
p pet: c.

p name.
p meAndMyPet.
c age.
c name.

]].

rawTime := block timeToRun.

DWorldMethodWrapper installOn: DTestPerson.

instrumentedTime := block timeToRun.

Transcript
show: 'raw: ', (rawTime asString); cr;
show: 'instrumented: (instrumentedTime asString); cr.

Listing A.8: Microbenchmark which uses the actual scoping of objects

94

Appendix B.

Setting up and Working with DWorlds
and the dwdbg

DWorlds and the dwdbg both operate are reported to operate on Squeak/Small-
talk version 4.1. A previous version of DWorlds operated on Pharo/Smalltalk
1.3. Yet, that version had to be ported to to Squeak because support for
method wrappers in Pharo is inherently broken. This section goes through
the installation of DWorlds and the dwdbg on a vanilla Squeak 4.1 image1.

"Install required refactoring browser and
optionally ocompletion"

(Installer ss
project: 'MetacelloRepository')
install: 'ConfigurationOfOCompletion';
install: 'ConfigurationOfRefactoringBrowser'.

((Smalltalk at: #ConfigurationOfOCompletion)
project
version: '1.1.2')
load.

"Fix minor bugs that occur during setup"

((Smalltalk at: #ConfigurationOfRefactoringBrowser)
project
version: '1.6')
load.

Listing B.1: Configuring Squeak for DWorlds

To prepare the Squeak image for DWorlds, the usage of underscores as
assignment operators must be forbidden. That is done using a refactoring rule
and by configuring the compiler.

1Which can be downloaded from http://ftp.squeak.org/4.1/

95

http://ftp.squeak.org/4.1/

Appendix B. Setting up and Working with DWorlds and the dwdbg

| environment rule change |
"Fix underscores for all classes"
environment := BrowserEnvironment new

forPackageNames: Smalltalk organization categories.

rule := RBUnderscoreAssignmentRule new.

SmalllintChecker runRule: rule onEnvironment: environment.

change := CompositeRefactoryChange new.
change changes: rule changes.
change execute

"Configure the compiler / parser"
Scanner prefAllowUnderscoreSelectors: true.
Scanner allowUnderscoreAsAssignment: false.

Listing B.2: Removing underscore assignments from a Squeak image

Now DWorlds and its direct prerequisites can be loaded into the image2. In
the right order, those are the packages LRSTMPrerequisites, LRSTM, Method-
Wrappers and DWorlds. Before DWorlds and the dwdbg can actually be used,
the DWorlds compiler has to be enabled explicitly (see next listing).

"Initially and to reload the compiler"
DWorldCompiler load.

"Unloading the compiler (in case of emergencies)"
DWorldCompiler unload.

"Uninstalling the method wrappers"
DWorldMethodWrapper nuke.

Listing B.3: Activating DWorlds in a Squeak/Smalltalk image

For the usage of DWorlds one can refer to the test cases or the numerous
code samples shown in this thesis. The dwdbg compiler extension is enabled
as soon as the DWorlds package is installed in the Squeak image.

2They are located on a montichello repository at http://nixis.de/~nikku/uni/master/
thesis/dworlds/

96

http://nixis.de/~nikku/uni/master/thesis/dworlds/
http://nixis.de/~nikku/uni/master/thesis/dworlds/

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst
sowie keine anderen Quellen und Hilfsmittel als die angegebenen benutzt
habe.

Berlin, den 30. Juli 2012

Nico Rehwaldt

97

