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Preface 

Aim of This Book 

This textbook gives a basic but thorough insight into the related disciplines of knowledge 
engineering and knowledge management. Knowledge engineering is traditionally con-
cerned with the development of information systems in which knowledge and reasoning 
play pivotal roles. Knowledge management is a recent area in business administration that 
deals with how to leverage knowledge as a key asset and resource in modern organiza-
tions. These two disciplines have strong ties. Managing knowledge within an organization 
is nowadays hardly conceivable without exploiting the vast potential of advanced infor-
mation and knowledge systems. On the other hand, information system developers and 
knowledge engineers have come to realize that successful technical work is only possible 
if it is properly situated within the wider organizational context. Knowledge-engineering 
methods have thus gradually broadened their scope: they are not only used for knowledge-
based systems development but have also shown their value in knowledge management, 
requirements engineering, enterprise modelling, and business process reengineering. 

This book presents a comprehensive methodology that covers the complete route from 
corporate knowledge management to knowledge analysis and engineering, all the way to 
knowledge-intensive systems design and implementation, in an integrated fashion. This 
methodology, called "CommonKADS," has been developed by a number of industry-
university consortia over the past decade, and CommonKADS is nowadays in use world-
wide by companies and educational institutions. The term "knowledge intensive" is inten-
tionally vague, as it is often hard to define a strict borderline between knowledge-rich and 
knowledge-poor domains. In fact, most complex applications contain components that can 
be characterized as "knowledge intensive." The applications need not at all be a "classic" 
knowledge-based system. Beyond information-systems applications, practice has shown 
that all projects in which knowledge plays an important role significantly benefit from the 
ideas, concepts, techniques, and experiences that come together in the CommonKADS 
methodology. 

Readership 

This book is intended for practitioners and students in information systems engineering as 
well as in knowledge and information management. We assume that you are willing to 
consider new ways of managing the increasing complexity of information in applications 
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and organizations. In reading this book, it will be helpful if you have some background in 
information systems, have some understanding of information analysis or business process 
modelling, or have experience in the area of information management. The material of this 
book has proved to be useful for courses, tutorials, and workshops for industrial practi-
tioners, as well as for advanced undergraduate and first-year graduate students in different 
information-systems related disciplines. 

Unique Features of This Textbook 

With this book, we aimed to construct several bridges between traditionally different com-
munities within the information-systems and knowledge-management areas: 

1. For information analysts and knowledge engineers, we show how knowledge analy-
sis constitutes a valuable and challenging extension of established development ap-
proaches, particularly of object-oriented approaches such as the Unified Modelling 
Language (UML, Booch et al. 1998). 

2. For knowledge managers, we show how a seamless transition and integration can be 
achieved from business analysis to information-technology (IT) systems modelling 
and design — a feature absent in almost all business process approaches, as well as 
systems-engineering methodologies. 

3. For software engineers, we show how conceptual modelling of information and knowl-
edge naturally provides the necessary baseline structures for reusable software archi-
tecture, systems design, and implementation. 

4. For IT project managers, we show how one can solve the eternal dilemma of balancing 
management control vs. flexibility in a structured way that is directly based on quality 
systems development methodology. 

Throughout the book, these points are illustrated by extensive case studies, which have 
been taken from real-life application projects carried out in different industries we have 
been working with over the years. 

As a guide to readers with different specific interests, the first chapter contains a de-
tailed road map to help you select those parts of the book that are most interesting and 
relevant to you. 

Additional Material 

This book contains the consolidated baseline of the CommonKADS methodology. The 
material in this book is sufficient for readers to start useful work on knowledge-intensive 
applications. There is a wealth of additional material available, which could not be in-
cluded in this book. For those who want to learn more about CommonKADS, this material 



1.44/www.commonkadcwe.nli 

Preface xi 

Figure 1 
Home page of the CommonKADS website at www.comtnonkads.uva.nl . 

is

www.commonkads.uva.nl . 

 website at ht tp : / /www. commonkads . uva . n1 (see Figure 1). 
This website contains a large repository of additional CommonKADS information, includ-
ing: 

• exercises related to the material discussed in this book; 
• case studies of applications; 
• access to sample running systems; 
• texts about additional modelling techniques, such as a dedicated formal specification 

language for knowledge systems; 
• catalogs of knowledge-model elements developed in previous projects; 
• pointers to support tools for CommonKADS, such as diagramming tools, elicitation-

support tools, CASE tools, and parsers for the languages used. 

Background 

CommonKADS is the product of a series of international research and application projects 
on knowledge engineering dating back as far as 1983. Historically, knowledge systems 
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developed mainly through trial and error. The methodological aspects received little atten-
tion, despite a clear need expressed by industry practitioners for guidelines and techniques 
to structure and control the development process. Accordingly, system developers and 
managers greatly appreciated the steps made by CommonKADS to fill this gap. 

Over the years, the methodology has been gradually extended as a result of feedback 
from practitioners and scientists. Practical use of CommonKADS showed that many sys-
tems projects fail because of a technology-push approach. An organization can implement 
information and knowledge technology successfully only if both the system's role and its 
potential impact on the organization are made explicit, and are agreed upon before and 
during system development. Thus, the introduction of knowledge-oriented methods and 
techniques for organizational analysis represents a major advance. Organizational anal-
ysis aims at creating an application-pull situation. Such an approach provides assurance 
to users, clients, and stakeholders that a new system will actually solve a real problem or 
take advantage of a real opportunity within the organization. Other useful additions to the 
methodology deal with the modelling of complex user-system interaction; with the intro-
duction of new specification techniques; and with the definition of a flexible, risk-driven, 
and configurable life-cycle management approach that replaces the waterfall model for 
information-systems projects, as classic as it is overly rigid. 

Experiences 

Early on, companies began using the knowledge technology products provided by Com-
monKADS. This contributed greatly to the products' success. As early as 1986, the Dutch 
company Bolesian Systems, now part of the large European software firm Cap Gemini, 
exploited the first version of CommonKADS and refined it into their in-house method for 
knowledge-systems development. They have built a very large number of commercial sys-
tems, mostly in the financial sector. More recently, the Everest company is making use of 
CommonKADS in a similar manner. Many banks and insurance companies in the Nether-
lands have systems developed with CommonKADS in daily use for assessing loan and 
mortgage applications. In Japan, several big companies, including IBM, are using Com-
monKADS in their in-house development; for example, to increase software-architecture 
reusability. A well-known application in the UK is the credit card-fraud detection pro-
gram developed by Touche Ross Management Consultants for Barclay Card. All the "Big 
Six" worldwide accounting and consultancy firms have integrated smaller or larger parts 
of CommonKADS into their proprietary in-house development methods. 

CommonKADS also frequently serves as a baseline for system development and re-
search projects, such as the European IT programme and national government projects. 
Furthermore, the CommonKADS methods are nowadays in use for purposes other than 
system development, such as knowledge management, requirements capture, and business-
process analysis. The US-based Carnegie Group, for example, has applied CommonKADS 
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in this way in a project for US West. Likewise, the Unilever company uses CommonKADS 
as its standard both for knowledge-intensive systems development and for knowledge man-
agement. 

The Authors 

Because it is difficult to write a textbook with many different authors, we decided early 
on that it would be best if only two authors actually wrote the text, and that the others 
contributed to the drafts. Of course, the material contains ideas and is based on the work of 
all the authors. Accordingly, Guus Schreiber has been responsible for the general editing 
process and for chapters 5-7 and 10-14, whereas Hans Akkermans wrote most of chapters 
1-4, 9 and 15. Nigel Shadbolt contributed chapter 8, Robert de Hoog wrote part of chapter 
4, and Anjo Anjewierden checked the CommonKADS Conceptual Modelling Language 
examples and contributed the appendix. 
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1 
Prologue: The Value of Knowledge 

Key points of this chapter: 

• Knowledge is a valuable asset. 
• Knowledge engineering as a discipline lies at the heart of development, dis-

tribution and maintenance of knowledge assets. 
• This book provides a methodological approach to engineering and manag-

ing knowledge. 
• The chapter includes a reader's guide for the knowledge analyst, the knowl- 

edge system developer, the knowledge manager, and the project manager. 

1.1 The Information Society Is Knowledge-Driven 

Our economic and social life is becoming more and more knowledge-driven. It has by 
now become a truism to say that we live in an information society. But we have only just 
begun to explore and understand the very real and everyday consequences. One of these 
consequences is the growing importance of knowledge. 

A quick scan through the recent literature on the information society illustrates this 
point with considerable force. Nowadays, one speaks of smart products, knowledge-based 
services, intelligent systems, expert and knowledge systems, intelligent enterprise, smart 
homes, knowledge workers, knowledge-intensive and learning organizations, the knowl-
edge economy. 

These are not just slogans. The knowledge content of products, services, and social 
activities in general is steadily growing. Tom Stewart of Fortune magazine puts it vividly: 

The quintessential raw materials of the Industrial Revolution were oil and 
steel. Well, more than 50% of the cost of extracting petroleum from the earth 
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is now information gathering and information processing. As for steel .. . 
big producers used to need three or four man-hours of labor to make a ton 
of steel. Now steelmaking, using sophisticated computers, requires only 45 
man-minutes of labor per ton. The intellectual component has grown and the 
physical component shrunk. 

If steel was the quintessential product of industrialism, the talismanic 
product of the Information Age is the microchip. The value of all the chips 
produced today exceeds the value of the steel produced. What makes them 
valuable? Certainly not their physical component. Chips are made mainly 
from silicon, that is, from sand, and not much of it. The value is mainly in the 
design of the chip, and in the design of the complex machines that make it. Its 
chief ingredient is knowledge. 

Add all this up and you come to a simple conclusion: more and more of 
what we buy and sell is knowledge. Knowledge is the principal raw material. 

Knowledge has thus come to be recognized and handled as a valuable entity in itself. 
It has been called "the ultimate intangible." Surveys consistently show that top executives 
consider know-how to be the single most important factor in organizational success. Yet, 
when they are asked how much of the knowledge in their companies is used, the typical 
answer is about 20%. So, as an observer from a Swiss think tank said, "Imagine the 
implications for a company if it could get that number up just to 30%!" This book offers 
some concepts and instruments to help you achieve that. 

The value of knowledge can even be expressed in hard figures. James Brian Quinn has 
made an extensive study of the key role of knowledge in modern organizations in his book 
Intelligent Enterprise (1992). Even in manufacturing industries, knowledge-based service 
capabilities have been calculated to be responsible for 65% to 75% of the total added value 
of the products from these industries. More generally, writers on management estimate 
that intellectual capital now constitutes typically 75% to 80% of the total balance sheet 
of companies. Today, knowledge is a key enterprise resource. Managing knowledge has 
therefore become a crucial everyday activity in modern organizations. 

These developments have fundamentally changed the importance and role of knowl-
edge in our society. As Peter Drucker, in his book Post-Capitalist Society (1993), says: 

The change in the meaning of knowledge that began 250 years ago has trans-
formed society and economy. Formal knowledge is seen as both the key per-
sonal resource and the key economic resource. Knowledge is the only mean-
ingful resource today. The traditional "factors of production" — land (i.e., 
natural resources), labor and capital — have not disappeared. But they have 
become secondary. They can be obtained, and obtained easily, provided there 
is knowledge. And knowledge in this new meaning is knowledge as a utility, 
knowledge as the means to obtain social and economic results. These devel- 
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opments, whether desirable or not, are responses to an irreversible change: 
knowledge is now being applied to knowledge. 

The Industrial Revolution revolutionized manual labor. In the process, it brought about 
new disciplines, such as mechanical, chemical, and electrical engineering, that laid the sci-
entific foundation for this revolution. Likewise, the Information Society is currently rev-
olutionizing intellectual labor. More and more people are becoming knowledge workers, 
while at the same time this work is undergoing a major transformation. New disciplines 
are emerging that provide the scientific underpinnings for this process. One of these new 
disciplines is knowledge engineering. Just as mechanical and electrical engineering offer 
theories, methods, and techniques for building cars, knowledge engineering equips you 
with the scientific methodology to analyze and engineer knowledge. This book teaches 
you how to do that. 

1.2 Knowledge in Context 

What is knowledge? This is a question frequently asked of people in the fields of knowl-
edge engineering and management. The same question has been at the roots of philosoph-
ical investigation for over two millennia. More millennia await us. So it is not likely that 
we are going to give you a definitive answer. Fortunately, we don't need to — in order to 
get knowledge to work for us. 

Data, information, and knowledge are three often-encountered words that belong 
closely together, seem to have slightly different meanings, yet are often used interchange-
ably as synonyms, and thus lead to continuing confusion. It is customary to talk about 
knowledge engineering, information technology, databases, and electronic data processing. 
But it would be equally reasonable, although uncommon, to speak of, for example, elec-
tronic knowledge processing, information bases or data technology. Hence, a frequently 
asked question is what are the differences are between data, information and knowledge? 
We will give two completely different answers, so that you can make the choice that suits 
you best. 

The first answer, often given by authors who want to give a rigorous definition, pro-
vides a demarcation about which there is consensus in the literature. 

Data Data are the uninterpreted signals that reach our senses every minute by the zil-
lions. A red, green, or yellow light at an intersection is one example. Computers are full 
of data: signals consisting of strings of numbers, characters, and other symbols that are 
blindly and mechanically handled in large quantities. 
Information  Information is data equipped with meaning. For a human car driver, a red 
traffic light is not just a signal of some colored object, rather, it is interpreted as an indica-
tion to stop. In contrast, an alien being who had just landed on Earth from outer space, and 
happened to find itself on a discovery tour in his earth shuttle near the Paris peripherique 
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Data 

Information 

Knowledge 

uninterpreted 
raw 

meaning attached 
to data 

* attach purpose and emergency alert 
competence to information -> 

* potential to generate action start rescue operation 

SOS 

Figure 1.1 
Distinctions between data, information, and knowledge. 

during the Friday evening rush hour, will probably not attach the same meaning to a red 
light. The data are the same, but the information is not. 

Knowledge Knowledge is the whole body of data and information that people bring 
to bear to practical use in action, in order to carry out tasks and create new information. 
Knowledge adds two distinct aspects: first, a sense of purpose, since knowledge is the 
"intellectual machinery" used to achieve a goal; second, a generative capability, because 
one of the major functions of knowledge is to produce new information. It is not accidental, 
therefore, that knowledge is proclaimed to be a new "factor of production." 

Figure 1.1 summarizes the distinctions usually made between data, information, and 
knowledge. However, there is a second and very different answer to the question of what 
constitutes a suitable definition of knowledge, namely, Why bother? In our everyday prac-
tical work, most of us recognize quite well who the knowledgeable people are and what 
knowledge is when we see it in action. And this is usually good enough for our purposes. 
The alien traveling on the crowded highways surrounding Paris and ignoring traffic signs 
will not strike many of us as being very knowledgeable. We don't really need any formal 
definitions for that. 

There are good reasons for such an answer, even beyond pragmatics. In many acknowl-
edged scientific disciplines, the practitioners often have a hard time answering analogous 
questions. We might ask (probably in vain) various categories of scientists to give a pre-
cise and formal definition of the central object of their science, say, of life, civilization, art, 
intelligence, evolution, organizational culture, the economic value of intangible assets.. . 
Engineers and physicists, we bet, will often give inadequate or incomplete answers to the 
question, what exactly is energy (not to mention entropy)? This does not prevent them, 
however, to build reliable bridges, cars, computers or heating installations. Seen in this 
light, there is nothing special or mystical about knowledge. 
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An important reason that the question, What is knowledge? is difficult to answer 
resides in the fact that knowledge very much depends on context. One of the authors of 
this book, for example, is a first-rate bridge player. To some of the others, all his knowledge 
does not really make much sense, because they know little more about bridge than that it 
is a game involving four players and 52 cards. Other authors happen to have a background 
in quantum physics, so they could explain (if you really wanted to know) about excited 
nuclear states and the Heisenberg uncertainty relations. To others, this is just data, or 
perhaps more accurately, just uncertainty. For all authors, all this is utterly irrelevant in 
the context of writing this book. Thus, one person's knowledge is another person's data. 
The borderlines between data, information, and knowledge are not sharp, because they are 
relative with respect to the context of use. 

This observation concerning the context dependence of knowledge is found, in differ-
ent terminology, across different study fields of knowledge. In knowledge engineering, it 
has become standard to point out that knowledge is to a large extent task- and domain-
specific. This book offers a range of practical but general methods to get a grip on the 
structure of human knowledge, as well as on the wider organizational context in which 
it is used. Only through such a nontechnology-driven approach can we build advanced 
information systems that adequately support people in carrying out their knowledge work. 

1.3 Knowledge Engineering and Knowledge Systems 

We mentioned knowledge engineering as one of the newly emerging disciplines sparked 
by the Information Age, similar to how the Industrial Revolution gave rise to mechanical 
and electrical engineering. Let us quote Peter Drucker once again: 

The knowledge we now consider knowledge proves itself in action. What we 
now mean by knowledge is information effective in action, information fo-
cused on results. Results are outside the person, in society and economy, or 
in the advancement of knowledge itself. To accomplish anything this knowl-
edge has to be highly specialized. .. It could neither be learned nor taught. 
Nor did it imply any general principle whatever. It was experience rather than 
learning, training rather than schooling. But today we do not speak of these 
specialized knowledges as "crafts." We speak of "disciplines." This is as great 
a change in intellectual history as any ever recorded. A discipline converts a 
"craft" into a methodology — such as engineering, the scientific method, the 
quantitative method or the physician's differential diagnosis. Each of these 
methodologies converts ad hoc experience into system. Each converts anec-
dote into information. Each converts skill into something that can be taught 
and learned. 

Drucker refers here to disciplines like mechanical engineering, physics, and chemistry 
that developed out of the craft of, say, building steam engines. 
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We see that the same is happening in our time in relation to information and knowl-
edge. From the craft of building computers, software programs, databases and other sys-
tems, we see new scientific disciplines slowly and gradually evolve such as telematics, 
algorithmics, information systems management, and knowledge engineering and manage-
ment. 

Knowledge engineering has evolved from the late 1970s onward, from the art of build-
ing expert systems, knowledge-based systems, and knowledge-intensive information sys-
tems. We use these terms interchangeably, and call them knowledge systems for short. 
Knowledge systems are the single most important industrial and commercial offspring of 
the discipline called artificial intelligence. They are now in everyday use all around the 
world. They are used to aid in human problem-solving ranging from, just to name a few of 
the CommonKADS applications, detecting credit card fraud, speeding up ship design, aid-
ing medical diagnosis, making scientific software more intelligent, delivering front-office 
financial services, assessing and advising on product quality, and supporting electrical net-
work service recovery. 

What are the benefits of knowledge systems? This is a valid question to ask, since over 
the years there have been high hopes, heavily publicized success stories, as well as clear-
cut disappointments. Therefore, we will cite the results of a recent empirical study, carried 
out by Martin et al. (1996). Two questions were addressed: (1) What are benefits expected 
from the use of knowledge systems? and (2) Are expected benefits from an investment 
in knowledge systems actually realized? To answer these questions, survey data were 
collected from persons in industry and business, and on this basis the variables linked to 
knowledge system benefits were explored from the viewpoint of those working with them. 

A summary of the empirical data is given in Table 1.1. The numbers represent frequen-
cies, i.e., the number of times an item was mentioned by the respondents in the survey. The 
top three benefits are: 

1. faster decision-making; 
2. increased productivity; 
3. increased quality of decision-making. 

Generally, anticipated benefits are indeed realized. The authors of the survey point out, 
however, that this occurs in varying degrees (percentages quoted range from 57% to 70%). 
Faster decision-making is more often felt to be a result of knowledge system utilization 
than an increase either in decision quality or in productivity. Thus, knowledge systems 
indeed appear to enhance organizational effectiveness. Although they are employed for 
a range of purposes, they seem to contribute particularly to the timeliness of knowledge 
delivery, enabling shorter time-to-market and faster customer response times. The authors 
further caution both managers and developers to carefully examine the organizational en-
vironment in which knowledge systems are to be developed and used. This is a significant 
issue brought forward by many authors. Indeed, the CommonKADS methodology pro-
vides special techniques for investigating this aspect. 
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Category Benefit Anticipated 
benefit 

Perceived as 
actual benefit 

Productivity Faster decision-making 
Increased productivity 
Enhanced problem-solving 
Solve complex problems 
Reliability 
Equipment operation 
Reduced downtime 

75 68 

Knowledge 
preservation 

Capture scarce expertise 

Use in remote locations 

10 14 

Quality 
improvement 

Increased quality of decisions 

Dealing with uncertainty 

29 18 

Training Educational benefits 15 13 
Job enrichment Flexibility 

Integrating knowledge 
of several experts  

10 15 
I 

Table 1.1 
Survey data on anticipated and realized benefits from knowledge systems. Numbers indicate frequency of men-
tioning the indicated category of benefits by the survey respondents. 

In the Information Society, knowledge systems have their place as an important main-
stream technology. That is why there is a strong need to convert the art and craft of knowl-
edge systems building into a real scientific discipline. Modern knowledge engineering, 
as laid down in this book, is this discipline. As we will show in detail, it brings several 
benefits: 

• Knowledge engineering enables one to spot the opportunities and bottlenecks in how 
organizations develop, distribute and apply their knowledge resources, and so gives 
tools for corporate knowledge management. 

• Knowledge engineering provides the methods to obtain a thorough understanding of 
the structures and processes used by knowledge workers — even where much of their 
knowledge is tacit — leading to a better integration of information technology in sup-
port of knowledge work. 

• Knowledge engineering helps, as a result, to build better knowledge systems: systems 
that are easier to use, have a well-structured architecture, and are simpler to maintain. 

1.4 Book Overview 

This book explains in detail how to carry out structured knowledge management, knowl- 
edge analysis, and associated knowledge-intensive system development. It is comprehen- 
sive. The book covers all relevant aspects ranging from the study of organizational benefits 
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to software coding. Along the road, the methods are illustrated by practical examples and 
case studies. The sum constitutes the CommonKADS standard for knowledge analysis 
and knowledge-system development. Below we briefly discuss the contents of each chap-
ter. In the next section you will find a road map for reading this book, depending on the 
type of reader (knowledge manager, knowledge analyst, knowledge implementor, project 
manager). 

Chapter 2 describes the baseline and rationale of CommonKADS, in particular its 
model-driven approach. This chapter contains some basic terminology used in this field. 
In Chapter 3 we pay attention to the first part of the analysis process: the modelling of 
the context or "environment" of a knowledge-intensive task we are interested in. We have 
learned that one cannot emphasize the need for context modelling enough, because the 
success of your application depends on it. The knowledge analysis at this level is still 
coarse-grained and is typically at the level of knowledge management. For this reason the 
next chapter deals with the issues related to knowledge management. This chapter contains 
an activity model for knowledge management. Together, Chapters 2, 3, and 4 provide a 
good introduction for readers interested primarily in knowledge management and coarse-
grained knowledge analysis. 

In Chapter 5 you will find an introduction to the major topic of this book: the methods 
for fine-grained knowledge modelling. Through a simple intuitive example you will learn 
the main ingredients needed. In Chapter 6 you will learn that a nice thing about knowledge 
analysis is that you do not have to build everything from scratch. For most knowledge-
intensive tasks there are a number of reusable knowledge structures that give you a head 
start. There is a parallel here with design patterns in object-oriented analysis, but you will 
find the knowledge patterns to be more powerful and precise, in particular because they are 
grounded on a decade of research and practical experience. 

The next two chapters are concerned with the knowledge-modelling process. Chap-
ter 7 provides you with practical how-to-do-it guidelines and activities for knowledge mod-
elling. In Chapter 8 we present a number of elicitation techniques that have proved to be 
useful in the context of knowledge analysis. This chapter contains practical guidelines for 
conducting interviews, as well as many other techniques. 

In Chapter 9 we turn our attention to communications aspects. Knowledge systems 
communicate with humans and with other systems. More and more, our systems act as 
software agents in close interaction with other agents. This chapter provides you with the 
tools for modelling this interactive perspective. Together, Chapters 3 through 9 contain 
the baseline of the CommonKADS analysis methods. Chapter 10 illustrates the use of 
these methods through a case study of a small and easy-to-understand sample application 
concerned with assigning rental houses to applicants. 

In the two subsequent chapters the focus is on system design and implementation. 
You learn how the analysis results can be turned relatively easily into a working software 
system. In Chapter 11 specialized CommonKADS system designs are discussed, using 
a popular object-oriented architecture as the baseline. In Chapter 12 you will see two 
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examples of system implementations for the housing case study described in Chapter 10. 
Chapter 13 tackles some more advanced knowledge analysis issues that extend the 

baseline methods presented earlier. The extensions include advanced domain modelling 
notations such as multiple subtype hierarchies as well as more complicated ways of mod-
elling the reasoning process. CommonKADS uses UML as a baseline set of notations. In 
Chapter 14 we give an overview of the UML notations used in this book. This chapter can 
be used as a reference whenever a UML notation is encountered. 

Last but not least, in Chapter 15 we turn our attention to project management. Our ap-
proach adopts Boehm's spiral approach, but it is specialized to suit the need of knowledge 
projects. 

1.5 A Road Map for the Reader 

We have made an effort to make this book interesting for readers with different back-
grounds and goals. Not every part of this book will be of interest to every reader. In this 
section we sketch four typical routes for navigating this book. This road map is shown 
graphically in Figure 1.2. 

Readers who are mainly into the analysis for knowledge-system development will 
find that the major part of the book is of direct interest. They should read at least Chapters 
2, 3, 5, 6, 7, 8, and 10. Chapter 9 on communication modelling is strongly recommended. 
Chapter 13 tackles the more advanced analysis topics. Chapters 11 and 12 provide the 
support information that is needed for quickly building a validation prototype. 

Readers primarily interested in knowledge management should read Chapters 2, 3, 
and 4 as the core text. Chapters 5 and 6 are strongly recommended. These chapters pro-
vide details on knowledge analysis and knowledge-intensive task patterns, and thus provide 
important background information for coarse-grained knowledge analysis. Also, we rec-
ommend the case study in Chapter 10. Many readers will find the material in Chapter 8 on 
elicitation techniques and in Chapter 15 on project management useful as well. Some of 
the topics of Chapter 13, in particular those with respect to advanced domain-knowledge 
modelling, will be relevant support material for knowledge management. 

People that are mainly interested in knowledge-system implementation should read 
at least Chapters 2 and 5 as a kind of minimal background information on CommonKADS-
based systems analysis. It is also useful to take a look at a few of the task templates 
in Chapter 6 and at the case study in Chapter 10. Chapters 11 and 12 contain the core 
material on design and implementation. 

Finally, readers interested in management of knowledge-system development 
projects will want to start with Chapters 2, 3, and 15. Chapters 5, 9, 10, and 11 give 
the necessary information about the content of the system-development work. Chapter 4 is 
likely to be of interest as well, because knowledge-system development takes place more 
and more in the context of a knowledge-management strategy of businesses. 
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Figure 1.2 
Road map for reading this book. Legend: cross = core text; bullet = recommended; circle = support material. 
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1.6 Bibliographical Notes and Further Reading 

For the growing value of knowledge in our economy and society, see for example the 
book entitled Intellectual Capital (1997) by Fortune magazine journalist Tom Stewart. The 
quotes from Peter Drucker are from his book Post-Capitalist Society (1993). Drucker is 
often credited with having coined terms such as "knowledge workers" and the "knowledge 
economy." The study by James Brian Quinn called Intelligent Enterprise (1992) contains 
many data and insights on the growing role of the service sector of the economy, services 
that are usually information- and knowledge-intensive. There is an overwhelming literature 
on questions such as What is knowledge? that we cannot even start citing. Many books on 
knowledge management discuss this question in more or less depth, see the reading notes 
to Chapter 4. For a detailed perspective on the nature of competence as seen from organiza-
tional psychology and human resource management, see Spencer and Spencer (1993). The 
same question has of course been also extensively reflected upon in the fields of knowl-
edge engineering, artificial intelligence and cognitive science. An interesting collection 
called Expertise in Context (Feltovich et al. 1997) contains a range of state-of-the-art con-
tributions by authors from these different fields. On the benefits of knowledge systems in 
industrial and business practice, empirical studies have been carried out, for example, by 
Wong et al. (1994) and Martin (1996). The table on knowledge-system benefits in this 
chapter has been adapted from the latter study. 





2 
Knowledge-Engineering Basics 

Key points of this chapter: 

• The need for a knowledge-engineering methodology. 
• The main principles underlying CommonKADS. 
• The CommonKADS suite of models, which acts as both a repository and a 

checklist for the knowledge-engineering process. 
• Roles in knowledge-engineering projects. 
• Definitions of frequently used terms. 

2.1 Historical Perspective 

The CommonKADS enterprise originates from the need to build industry-quality knowl-
edge systems on a large scale, in a structured, controllable, and repeatable way. When 
the CommonKADS work started back in 1983, there was little interest in such method-
ological issues. At that time, the prevailing paradigm for knowledge systems was rapid 
prototyping of one-shot applications, using special-purpose hardware and software such as 
LISP machines, expert system shells, and so on. Also, it was thought that the structure of 
knowledge and knowledge systems was rather simple, as in the famous rule-based expert 
systems (see Figure 2.1). 

In Figure 2.2 we see a short history of knowledge systems since around 1965. Over 
the past 15 years, many developers and managers have started to realize that a structured 
approach to analysis, design, and management is just as necessary for knowledge systems 
as it is for other information systems. In addition, the architecture of knowledge has turned 
out to be much more complex and context-dependent than was realized in the first genera-
tion of expert systems. Nowadays, these insights are commonplace. Still, the point is how 
to do it. That is what this book is all about. 
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Figure 2.1 
The basic architecture of the first generation of expert systems: application knowledge as a big bag of domain 
facts and rules, controlled by a simple reasoning or inference engine. 
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Figure 2.2 
A short history of knowledge systems. 

2.2 The Methodological Pyramid 

A methodology such as CommonKADS or any other software-development approach con-
sists of a number of elements. These elements can be depicted graphically in the form 
of a pyramid (see Figure 2.3). The methodological pyramid has five layers, where each 
consecutive layer is built on top of the previous one. In this chapter we mainly talk about 
the lowest layer: the "worldview" of the methodology. These are in fact the advertising 
slogans of an approach. These slogans need to be grounded in theory, methods tools and 
practical case studies which constitute the other four layers. This rest of this book treats 
these methodology components extensively. 

The slogans of CommonKADS can be formulated as a number of principles that form 
the baseline and rationale of the approach. The principles are based on the lessons learned 
about knowledge-system development in the past. We discuss them in some depth in the 
next section. 
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case studies 
application projects 

CASE tools 
implementation environments 

life-cycle model, process model, 
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graphical/textual notations 
worksheets, document structure 

model-based knowledge engineering 
reuse of knowledge patterns 

Figure 2.3 
The building blocks of a methodology: the worldview or "slogans," the theoretical concepts, the methods for using 
the methodology, the tools for applying methods, and the experiences through use of the methodology. Feedback 
flows down along the pyramid. Once a world view changes, the fundament falls away under an approach, and the 
time is ripe for a paradigm shift. 

2.3 Principles 

The CommonKADS methodology offers a structured approach. It is based on a few basic 
thoughts or principles that have grown out of experience over the years. We briefly sketch 
the fundamental principles underlying modern knowledge engineering. 

Knowledge engineering is not some kind of "mining from the expert's head," but consists 
of constructing different aspect models of human knowledge. 

Traditionally, knowledge engineering was viewed as a process of "extracting" or "mining 
from the expert's head" and transporting it in computational form to a machine (Figure 2.4). 
This has turned out to be a crude and rather naive view. Today, knowledge engineering is 
approached as a modelling activity. A model is a purposeful abstraction of some part 
of reality. Modelling is constructing a good description (that is, good enough for your 
purpose) of only a few aspects of knowledge and leaving out the rest. Models in this sense 
are useful because all details of expert knowledge are neither sufficiently accessible to get a 
complete grip on, nor necessary for the knowledge goals of most projects. A model makes 
it possible to focus on certain aspects and ignore others. In the CommonKADS view, a 
knowledge project entails the construction of a set of aspect models which together are an 
important part of the products delivered by the project. The CommonKADS model suite is 
a convenient instrument to break down and structure the knowledge-engineering process. 
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Figure 2.4 
The old "mining" view of knowledge engineering. 

The knowledge-level principle: in knowledge modelling, first concentrate on the concep-
tual structure of knowledge, and leave the programming details for later. 

Many software developers have an understandable tendency to take the computer system 
as the dominant reference point in their analysis and design activities. But there are two 
important reference points: the computational artefact to be built, but most importantly, 
there is the human side: the real-world situation that knowledge engineering addresses 
by studying experts, users, and their behavior at the workplace, embedded in the broader 
organizational context of problem-solving. In the CommonKADS approach, the latter is 
the foremost viewpoint. The knowledge-level principle, first put forward by Alan Newell 
(1982), states that knowledge is to be modelled at a conceptual level, in a way independent 
of specific computational constructs and software implementations. The concepts used 
in the modelling of knowledge refer to and reflect (that is, model) the real-world domain 
and are expressed in a vocabulary understandable to the people involved. In the Com
monKADS view, the artefact design of a knowledge system is called structure-preserving 
design, since it follows and preserves the analyzed conceptual structure of knowledge. 

Knowledge has a stable internal structure that is analyzable by distinguishing specific 
knowledge types and roles. 

It goes without saying that knowledge, reasoning, and problem-solving are extremely rich 
phenomena. Knowledge may be complex, but it is not chaotic: knowledge appears to have 
a rather stable internal structure, in which we see similar patterns over and over again. Al-
though the architecture of knowledge is clearly more complicated than depicted in the rule-
based systems of Figure 2.1, knowledge does have an understandable structure, and this is 
the practical hook for doing successful knowledge analysis. Conceptually, knowledge-level 
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models help us understand the universe of human problem-solving by elaborate knowledge 
typing. An important result of modern knowledge engineering is that human expertise can 
be sensibly analyzed in terms of stable and generic categories, patterns, and structures of 
knowledge. Thus, we model knowledge as a well-structured functional whole, the parts 
of which play different, restricted, and specialized roles in human problem solving. We 
will encounter this concept of limited roles of knowledge types and components in many 
different forms throughout this book. If you want the answer to what knowledge is, this is 
the way you'll find it in this book, at the level of and in terms of an engineering science. 

A knowledge project must be managed by learning from your experiences in a controlled 
"spiral" way. 

The development of simple or very well-known types of information systems usually pro-
ceeds along a fixed management route. This is especially clear in the so-called waterfall 
model of systems development. This consists of a number of predefined stages in a pre-
defined sequence: prepare and plan the project; find out about the customer requirements; 
specify and design the system; program, test, and deliver it — and in this order only. 
Knowledge is too rich and too difficult to understand to fit into such a rigid approach. 
Rapid prototyping has therefore been very popular in knowledge systems because it en-
ables learning on the spot and changing course whenever necessary. The drawback to 
rapid prototyping is its ad-hoc nature, difficult to predict and manage. CommonKADS 
therefore favors a configurable and balanced project management approach, more flexible 
than the waterfall model and more controlled than rapid prototyping. Knowledge project 
management follows a spiral approach that enables structured learning, whereby interme-
diate results or "states" of the CommonKADS models act as signposts to what steps to take 
next. In determining these steps, the notions of objectives and risks play a crucial role. 

2.4 Model Suite 

Figure 2.5 presents the CommonKADS model suite that is the practical expression of 
the above principles underlying knowledge analysis. It constitutes the core of the Corn-
monKADS knowledge-engineering methodology. 

The figure shows three groups of models, because there are essentially three types of 
questions that must be answered: 

1. Why? Why is a knowledge system a potential help or solution? For which problems? 
Which benefits, costs, and organizational impacts does it have? Understanding the 
organizational context and environment is the most important issue here. 

2. What? What is the nature and structure of the knowledge involved? What is the 
nature and structure of the corresponding communication? The conceptual description 
of the knowledge applied in a task is the main issue here. 
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Figure 2.5 
The CommonKADS model suite. 

3. How? How must the knowledge be implemented in a computer system? How do the 
software architecture and the computational mechanisms look? The technical aspects 
of the computer realization are the main focus here. 

All these questions are answered by developing (pieces of) aspect models. Com
monKADS has a predefined set of models, each of them focusing on a limited aspect, 
but together providing a comprehensive view : 

• Organization model The organization model supports the analysis of the major fea-
tures of an organization, in order to discover problems and opportunities for knowl-
edge systems, establish their feasibility, and assess the impacts on the organization of 
intended knowledge actions. 

• Task model Tasks are the relevant subparts of a business process. The task model 
analyzes the global task layout, its inputs and outputs, preconditions and performance 
criteria, as well as needed resources and competences. 

• Agent model Agents are executors of a task. An agent can be human, an information 
system, or any other entity capable of carrying out a task. The agent model describes 
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the characteristics of agents, in particular their competences, authority to act, and con-
straints in this respect. Furthermore, it lists the communication links between agents in 
carrying out a task. 

• Knowledge model The purpose of the knowledge model is to explicate in detail 
the types and structures of the knowledge used in performing a task. It provides an 
implementation-independent description of the role that different knowledge compo-
nents play in problem-solving, in a way that is understandable for humans. This makes 
the knowledge model an important vehicle for communication with experts and users 
about the problem-solving aspects of a knowledge system, during both development 
and system execution. 

• Communication model Since several agents may be involved in a task, it is important 
to model the communicative transactions between the agents involved. This is done by 
the communication model, in a conceptual and implementation-independent way, just 
as with the knowledge model. 

• Design model The above CommonKADS models together can be seen as constitut-
ing the requirements specification for the knowledge system, broken down in differ-
ent aspects. Based on these requirements, the design model gives the technical sys-
tem specification in terms of architecture, implementation platform, software modules, 
representational constructs, and computational mechanisms needed to implement the 
functions laid down in the knowledge and communication models. 

Together, the organization, task, and agent models analyze the organizational environ-
ment and the corresponding critical success factors for a knowledge system. The knowl-
edge and communication models yield the conceptual description of problem-solving func-
tions and data that are to be handled and delivered by a knowledge system. The design 
model converts this into a technical specification that is the basis for software system im-
plementation. This process is depicted in Figure 2.5. We note, however, that not always do 
all models have to be constructed. This depends on the goals of the project as well as the 
experiences gained in running the project. Thus, a judicious choice is to be made by the 
project management. Accordingly, a CommonKADS knowledge project produces three 
types of products or deliverables: 

1. CommonKADS model documents; 
2. project management information; 
3. knowledge system software. 

As a final note, we want to emphasize that knowledge systems and their engineering 
are not life forms totally unrelated to other species of information systems and manage-
ment. In what follows, we will see that CommonKADS has been influenced by other 
methodologies, including structured systems analysis and design, object orientation, orga-
nization theory, process reengineering, and quality management. For example, the selling 
point of object orientation is often said to be the fact that objects in information systems 



20 Chapter 2 

model real-world entities in a natural fashion. This has clear similarities to the knowledge-
level principle discussed above. (And the consequences of the limited-role concept, intro-
duced later on, will show that there is more to information systems than objects alone!) 
Thus, there is a gradual transition. CommonKADS has integrated elements of other ex-
isting methodologies, and also makes it possible to switch to other methods at certain 
points. This is in line with the modern view of knowledge systems as enhancements em-
bedded in already existing information infrastructures, instead of stand-alone expert sys-
tems. Hence, CommonKADS-style knowledge engineering is to be seen as an extension 
of existing methods: it is useful when tasks, processes, domains, or applications become 
knowledge intensive. 

2.5 Process Roles 

It is important to identify a number of roles that humans play in the knowledge management 
and engineering processes. We distinguish six different roles, which we briefly discuss 
below. Note that a certain individual can play several roles, in particular in smaller projects. 
Figure 2.6 gives a graphical overview of the six process roles. 

Knowledge provider/specialist An important role in the process is played by the human 
"owner" of knowledge. This is traditionally an "expert" in the application domain, but 
could also be other people in the organization that do not have the "expert" status. One 
important problem for a knowledge engineer is to find the "real" experts. Bogus experts are 
harmful to a project. In Chapter 8 some types of knowledge providers are discussed, as well 
as techniques for eliciting data about knowledge-intensive tasks from domain specialists. 

Knowledge engineer/analyst Although strictly speaking the term "knowledge engineer" 
points to workers in all phases of the development process, the term is usually reserved for 
system-analysis work. Therefore, "knowledge analyst" could in fact be a better term. In 
this book we use these two terms interchangeably. This book is primarily targeted at the 
work of the knowledge engineer, as can be deduced from the road map in the previous 
chapter. Knowledge analysis has from the beginning been perceived as the major bottle-
neck in knowledge-system development. CommonKADS offers the knowledge engineer a 
range of methods and tools that make the analysis of a standard knowledge-intensive task 
(such as assessment) relatively straightforward. 

Knowledge-system developer In a small project, system implementation was often done 
by the person who did the analysis. As systems are now produced routinely, this is not true 
anymore. The role of knowledge-system developer has its special characteristics. The 
knowledge-system developer is responsible for design and implementation. The devel-
oper needs to have a basic background in the analysis methods, so she can understand the 
requirements formulated by the knowledge analyst. 
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knowledge 
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defines knowledge strategy 
initiates knowledge development projects 
facilitates knowledge distribution 

Figure 2.6 
Graphical view of the six process roles in knowledge engineering and management. 

In practice, it often turns out that in knowledge-system development the main 
knowledge-related problems have already been solved by the knowledge analyst. There-
fore, a knowledge-system developer needs the same skills as "normal" software designers. 
It is also worth bearing in mind that the more knowledge intensive the task to be automated, 
the greater need there is for complex interface facilities. An example of an interface facility 
typically found in a knowledge system is an explanation facility. 

Knowledge user A knowledge user makes use directly or indirectly of a knowledge sys-
tem. Involving knowledge users from the beginning is even more important than in regular 
software engineering projects. Automation of knowledge-intensive tasks invariably af-
fects the work of the people involved. For design and implementation it is important to 
ensure that they interact with the system with their own interface representations. The 
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knowledge engineer also needs to be able to present the analysis results to the potential 
knowledge users. This requires special attention. One of the reasons for the success of 
CommonKADS has always been that the knowledge analysis is understandable to knowl-
edge users with some background in the domain. 

Project manager The knowledge-project manager is in charge of running of a 
knowledge-system development project. The typical project is small to medium-sized 
with four to six people working on it. The project manager is likely to benefit from a 
structured approach such as CommonKADS. The model suite gives a powerful and flexi-
ble instrument for project planning and control, as we will see in Chapter 15. The main risk 
the project manager runs is the elusive nature of knowledge-related problems. Therefore, 
requirements monitoring is of prime importance during the lifetime of the project. The 
context models of Chapter 3 play a key role in that. 

Knowledge manager The knowledge manager is not directly involved in knowledge-
development projects. The knowledge manager formulates a knowledge strategy at the 
business level. The knowledge manager initiates knowledge development and knowledge 
distribution activities. These projects can include only knowledge analysis (e.g., for knowl-
edge development), but also working knowledge systems (a vehicle for knowledge distri-
bution). The link between knowledge engineering and knowledge management is made at 
the level of the CommonKADS context models, as we will see in Chapter 4. 

2.6 Some Terminology 

Like any other relatively young research discipline, knowledge engineering suffers from 
an overdose of jargon. The exact meaning of some terms varies among approaches. In the 
previous chapter we gave a definition of the terms "data," "information," and "knowledge." 
Here, we have included some additional terminological definitions that we found useful in 
practice. 

Domain A domain is some area of interest. Example domains are internal medicine 
and chemical processes. Domains can be hierarchically structured. For example, inter-
nal medicine can be split into a number of subdomains such a hematology, nephrology, 
cardiology, etc. 

Task A task is a piece of work that needs to be done by an agent. In this book we are 
primarily interested in "knowledge-intensive" tasks: tasks in which knowledge plays a key 
role. Example tasks are diagnosing malfunctions in internal organs such as a kidney, or 
monitoring a chemical process such as oil production. 

Agent An agent is any human or software system able to execute a task in a certain 
domain. For example, a physician can carry out the task of diagnosing complaints uttered 
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by patients. A knowledge system might be able to execute the task of monitoring an oil 
production process on an oil rig. 
Application  An application is the context provided by the combination of a domain and 
a task carried out by one or more agents. 

Application domain/task  These two terms are used to refer to the domain and/or task 
involved in a certain application. 
Knowledge(-based) system  The term "knowledge-based system" (KBS) has been used 
for a long time and stems from the first-generation architecture discussed in the previous 
chapter, in which the two main components are a reasoning engine and a knowledge base. 
In recent years the term has been replaced by the more neutral term "knowledge system." 
It is worthwhile pointing out that there is no fixed borderline between knowledge systems 
and "normal" software systems. Every system contains knowledge to some extent. This 
is increasingly true in modern software applications. The main distinction is that in a 
knowledge system one assumes there is some explicit representation of the knowledge 
included in the system. This raises the need for special modelling techniques. 
Expert system  One can define an expert system as a knowledge system that is able to 
execute a task that, if carried out by humans, requires expertise. In practice the term is 
often used as a synonym for knowledge(-based) system. We do not use this term anymore. 

2.7 Bibliographical Notes and Further Reading 

CommonKADS is not the only knowledge-engineering methodology developed over the 
last decade. CommonKADS itself has grown out of KADS (Wielinga et al. 1992) and 
Components of Expertise (Steels 1990). CommonKADS was also influenced by ap-
proaches in the United States such as Generic Tasks (Chandrasekaran and Johnson 1993), 
PROTEGE(Tu et al. 1995) and Role-Limiting Methods (Marcus 1988). The publications 
about the so-called Sisyphus studies give a good overview of the contemporary knowledge-
engineering methods (Linster 1994, Schreiber and Birmingham 1996). Studer et al. (1998) 
provide a survey of recent developments in knowledge engineering. 
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The Task and Its Organizational Context 

Key points of this chapter: 

• Understanding and properly dealing with the wider organizational context 
is the critical success factor for knowledge systems and other knowledge-
management measures. 

• How to identify knowledge bottlenecks and opportunities within the organi-
zation. 

• How to assess the economic, technical, and project feasibility of considered 
solutions such as knowledge systems. 

• How to understand and decide about organizational impacts and needed 
changes when new knowledge-system solutions are introduced. 

• How to integrate knowledge-oriented organization, workplace, and task 
analysis into information analysis. 

3.1 Why Organizational Aspects Are So Important 

A knowledge system is useful because and when it performs a demanding task for us, or 
helps us in carrying out such tasks ourselves, as a kind of intelligent assistant. However, 
tasks do not take place in an organizational vacuum. Any knowledge or information sys-
tem can function satisfactorily only if it is properly integrated in the organization-at-large 
in which it is operational. A knowledge system acts as one agent cooperating with many 
others, human and nonhuman, and it carries out just a fraction of the many tasks that are 
performed in the organization. knowledge systems, like information systems in general, 
must thus be viewed as supporting components within the business processes of the orga-
nization — no less and no more. 

Generally, knowledge systems fit well into business process improvement approaches. 
Process improvement is a much more appropriate perspective than the traditional idea of 
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automating expert tasks. "Automation" is misleading for two reasons. First, knowledge-
intensive tasks are often so complex that full automation is simply an ill-directed ambition, 
bound to lead to wrong expectations and ultimately to disappointment. At the same time, 
knowledge systems can provide active rather than passive help, in contrast to most current 
automated systems, precisely because they store knowledge and are able to reason about 
it. On this basis, they can much more actively act and interact with the user. Therefore, 
the appropriate positioning of knowledge systems is not that of automating expert tasks. 
Automation is a misleading concept. Zuboff (1987) therefore speaks of "informating" 
rather than "automating" work. Indeed, knowledge systems are better seen as agents that 
actively help their user as a kind of intelligent support tool or personal assistant. In this 
way, they have their partial but valuable role in improving the overall business process in 
collaboration with their users. 

Therefore it is essential to keep track of the organizational environment in which a 
knowledge system has to operate. Already at an early stage the knowledge engineer has 
to take measures to ensure that a knowledge system will be properly embedded in the 
organization. Traditionally, much of the effort of information and knowledge engineers 
was directed at getting the technical aspects under control. Now that knowledge and in-
formation technology have achieved a good degree of maturity and diffusion, this is no 
longer the main focus. Many factors other than technology determine success or failure of 
a knowledge system in an organization. They must perform their task well according to set 
standards, but they must also be acceptable and friendly to the end user, interoperate with 
other information systems, and fit seamlessly into the structures, processes, and quality 
systems of the organization as a whole. 

It is fair to say that practical experience has shown that often the critical success factor 
for knowledge systems is how well the relevant organizational issues have been dealt with. 
Many failures in automation have resulted, not from problems with the technology but from 
the lack of concern for social and organizational factors. Yet, many system-development 
methodologies focus on the technical aspects and do not support the analysis of the orga-
nizational elements that determine success or failure. CommonKADS offers the tools to 
cater to this need. These tools for organization and task analysis achieve several important 
goals: 

1. Identify problems and opportunities: Find promising areas where knowledge systems 
or other knowledge management solutions can provide added value to the organization. 

2. Decide about solutions and their feasibility: Find out whether a further project is 
worthwhile in terms of expected costs and benefits, technological feasibility, and 
needed resources and commitments within the organization. 

3. Improve tasks and task-related knowledge: Analyze the nature of the tasks involved in 
a selected business process, with an eye on what knowledge is used by the responsible 
agents in order to carry them out successfully, and what improvements may be achieved 
in this respect. 
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4. Plan for needed organizational changes: Investigate what impacts a proposed knowl-
edge system has on the various aspects of the organization, and prepare an action plan 
for associated organizational measures. 

The CommonKADS task and organization analysis have a very tight fit to these four 
goals. Although their aim is a very critical one — uncovering the key success factors 
of knowledge systems and preparing the needed organizational measures — the methods 
themselves are easy to understand and simple to use, as we show below. 

3.2 The Main Steps in Task and Organization Analysis 

The steps in task and organization analysis that the knowledge analyst has to undertake are 
the following. 

1. Carry out a scoping and feasibility study, consisting of two parts: 

a. Identifying problem/opportunity areas and potential solutions, and putting them 
into a wider organizational perspective. 

b. Deciding about economic, technical, and project feasibility, in order to select the 
most promising focus area and target solution. 

2. Carry out an impact and improvements study for the selected target solution, again 
consisting of two parts: 

a. Gathering insights into the interrelationships between the task, agents involved, 
and use of knowledge for successful performance, and what improvements may be 
achieved here. 

b. Deciding about organizational measures and task changes, in order to ensure orga-
nizational acceptance and integration of a knowledge-system solution. 

Along the above lines, a comprehensive picture of the organizational situation in which 
a knowledge system must operate is built up. For the first study, on scope and feasibil-
ity, CommonKADS offers the organization model for the description and analysis of the 
broader organizational environment. 

For the second study, on impacts and improvements, CommonKADS offers the task 
and agent models. This study is more focused and detailed. It zooms in on the relevant 
part of the organization. The task model focuses on those tasks and task-related knowledge 
assets that are directly related to the problem that needs to be solved through the knowledge 
system. These tasks are allocated to agents characterized through the agent model. 

For both studies, their first part ( 1 a and 2a) is oriented toward modelling and analy-
sis, whereas the concluding parts ( lb and 2b) integrate the model results for the express 
purpose of managerial decision-making. 
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Below we discuss how to carry out these studies through the CommonKADS orga-
nization, task and agent models. All steps in developing these models can be taken by 
employing a set of practical and easy-to-use worksheets and checklists. 

3.3 The Feasibility Study: Organization Modelling 

There exists an overwhelming amount of literature on organization analysis, management 
theory, business process improvement, and reengineering that yields valuable and relevant 
insights. The word "overwhelming" is even an euphemism. Generally speaking, it is quite 
impossible to construct a complete description of an organization. Fortunately, for our pur-
pose of value-adding knowledge-system applications and other knowledge-management 
solutions, this is not really necessary. The reason is that we look at the organization from 
a specific viewpoint, namely, that of knowledge orientation. 

So, the idea underlying the CommonKADS organization model is to take the relevant 
elements and experiences from various sources — including organization theory, business 
process analysis, information management — and to integrate them into a coherent and 
comprehensive package targeted at knowledge orientation in the organization. 

The organization model describes the organization in a structured, systems-like fash-
ion. Different aspects, such as organization structure, processes, staff, and resources, come 
into play and interact when one wants to introduce new knowledge solutions. Therefore, 
these different aspects of the organization are represented as components in the model. The 
idea is that in the model these components have to be filled in both for the current and the 
future situation. By comparing these descriptions, one gets a very good feel for the value, 
feasibility, and acceptance of new knowledge-oriented solutions. In addition, one can come 
up with a well-founded action plan for organizational measures and improvements beyond 
mere systems development. 

A corresponding overview of the organization model, and how it relates to the task 
and agent models, is depicted in Figure 3.1. The construction of these models is done by 
means of worksheets, as we will now discuss. 

3.3.1 Organizational Context, Problems, and Solutions Portfolio 

The first part of the organization model focuses on problems and opportunities, as seen 
in the wider organizational context. The latter contains broad categories such as the or-
ganization's mission, goals, strategy, value chain, and external influencing factors. This 
context is assumed to be relatively invariant ( for the present purpose, that is). Neverthe-
less, opportunities, problems, and knowledge-oriented solutions must always be ultimately 
judged within such a broader business perspective, so it is important to get a real and ex-
plicit understanding of this context. To this end, Table 3.1 gives a worksheet (numbered 
0M-1) which explains the various aspects to consider, and helps in specifying this part of 
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Organization Model 

0M-1 OM-2 

Problems Organization 
Focus Area 

Opportunities Description: OM-3  OM-4 

General 
Context 

(Mission, 
Strategy, 

Environment, 
CSFs,...) 

Potential 
Solutions 

Structure 

Process  .......... Process 
Breakdown 

People 

Culture & Power 

Resources 

Knowledge ............................................. Knowledge 
Assets 

Figure 3.1 
Overview of the components of the CommonKADS organization model. 

Organization Model I Problems and Opportunities Worksheet OM-1 
PROBLEMS AND 
OPPORTUNITIES 

Make a shortlist of perceived problems and opportunities, based on 
interviews, brainstorm and visioning meetings, discussions with managers, 
etc. 

ORGANIZATIONAL 
CONTEXT 

Indicate in a concise manner key features of the wider organizational 
context, so as to put the listed opportunities and problems into proper 
perspective. Important features to consider are: 
1. Mission, vision, goals of the organization 
2. Important external factors the organization has to deal with 
3. Strategy of the organization 
4. Its value chain and the major value drivers 

SOLUTIONS List possible solutions for the perceived problems and opportunities, as 
suggested by the interviews and discussions held, and the above features of 
the organizational context. 

'Fable 3.1 
Worksheet OM-1: Identifying knowledge-oriented problems and opportunities in the organization. 
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the organization model. One may see this activity as covering the visioning part of the 
organization study. The problem-opportunity portfolio and potential knowledge solutions 
can be created by interviews with key staff members (but perhaps also customers!), brain-
storming and visioning meetings, discussions with managers, and so on. For a successful 
knowledge project, it is important to identify at the start the various stakeholders that have 
an interest 

• Knowledge providers: The specialists or experts in whom the knowledge of a certain 
area resides. 

• Knowledge users: The people that need to use this knowledge to carry out their work 
successfully. 

• Knowledge decision-makers: The managers that have the position to make decisions 
that affect the work of either the knowledge providers or the knowledge users. 

Identifying these people and their roles at an early stage helps to quickly focus on 
the appropriate business processes, problems, and opportunities. Usually, knowledge 
providers, users, and decision-makers are very different persons with very different in-
terests. Interviewing them helps you to understand what is at stake for them in relation to 
your knowledge project. Divergent views and conflicts of interests are common in organi-
zations, but it takes effort to understand them. Without such an understanding, however, a 
good knowledge solution is not even possible. 

3.3.2 Description of Focus Area in the Organization 

The second part of the organization model concentrates upon the more specific, so-called 
variant, aspects of the organization. Here, we cover aspects such as how the business 
process is structured, what staff is involved, what resources are used, and so on. These 
components of the organization model may change (hence "variant") as a result of the 
introduction of knowledge systems. As an aid to the analysis, Table 3.2 gives a worksheet 
(numbered OM-2). It explains what important components of the organization to consider. 
We note that this analysis relates to a single problem-opportunity area, selected out of the 
list produced previously (in worksheet OM-1). It might be the case that this step has to be 
repeated for other areas as well. 

The process component in OM-2 plays a central role within the CommonKADS 
organization-analysis process, as we will also see in the next worksheet. A good guideline 
is construct an UML activity diagram of the business process, and use this diagram as a 
filler of the slot in worksheet OM-2. Figure 3.2 shows a simplified business process of a 
company designing and selling elevators, described with the use of an activity diagram, A 
nice feature of activity diagrams is that we can locate the process in parts of the organiza-
tion, and can include both process flow as well as information objects involved. Readers 
not familiar with the notation can read Section 14.2, which provides a short description of 
the main ingredients of this notation. 

mr 
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Organization Model I Variant Aspects Worksheet OM-2 
STRUCTURE Give an organization chart of the considered (part of the) organization in 

terms of its departments, groups, units, sections, ... 
PROCESS Sketch the layout (e.g., with the help of a UML activity diagram) of the 

business process at hand. A process is the relevant part of the value chain 
that is focused upon. A process is decomposed into tasks, which are 
detailed in worksheet OM-3. 

PEOPLE Indicate which staff members are involved, as actors or stakeholders, 
including decision makers, providers, users or beneficiaries ("customers") 
of knowledge. These people do not need to be actual people, but can be 
functional roles played by people in the organization (e.g., director, 
consultant) 

RESOURCES Describe the resources that are utilized for the business process. These may 
cover different types, such as: 
I. Information systems and other computing resources 
2. Equipment and materials 
3. Technology, patents, rights 

KNOWLEDGE Knowledge represents a special resource exploited in a business process. 
Because of its key importance in the present context, it is set apart here. 
The description of this component of the organization model is given 
separately, in worksheet OM-4 on knowledge assets. 

CULTURE & POWER Pay attention to the unwritten rules of the game, including styles of 
working and communicating ("the way we do things around here"), related 
social and interpersonal (nonknowledge) skills, and formal as well as 
informal relationships and networks. 

Table 3.2 
Worksheet OM-2: Description of organizational aspects that have an impact on and/or are affected by chosen 
knowledge solutions. 

3.3.3 Breakdown of the Business Process 

The process is also specified in more detail with the help of a separate worksheet. The 
business process is broken down into smaller tasks, because an envisaged knowledge sys-
tem always carries out a specific task — and this has to fit properly into the process as a 
whole. Often, some process adaptations are needed by changing tasks, or combining or 
connecting them differently. To investigate this aspect better, Table 3.3 presents a work-
sheet (numbered OM-3) to specify details of the task breakdown of the business process. 
A rough indication is given how knowledge-intensive these tasks are and what knowledge 
is used. You might find it difficult to establish the knowledge-intensiveness of a task at this 
point, but after reading more about knowledge-intensive task types in Chapter 6 you will 
have background knowledge to help you in this respect. 

Also, an indication is given of the significance of each task, e.g., on an ordinal scale 
of 1-5. There are no hard rules for assessing task significance and it can be tricky, but it 
is typically a combination of effort required, resources required, task criticality, and task 
complexity. 
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Figure 3.2 
Business process of a company designing and selling elevators, specified through a UML activity diagram. 

The business process is modelled down to the level of detail that enables us to make 
decisions about a task, e.g., construct a knowledge model to automate or explicate that 
task. 

3.3.4 Knowledge Assets 

Let's turn now to the "knowledge" element in worksheet OM-2. Evidently, knowledge is 
the single most important aspect of the organization to analyze here in detail. Accordingly, 
Table 3.4 provides a worksheet (numbered OM-4) to describe knowledge assets. This 
worksheet provides the specification of the knowledge component of the CommonKADS 
organization model. Later on, this specification will be further refined, first in the task 
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Organization Model I Process Breakdown Worksheet OM-3  
No. TASK PER- 

FORMED 
BY 

WHERE? KNOWL- 
EDGE 
ASSET 

INTEN- 
SIVE? 

SIGNIFI-
CANCE 

task 
identi- 
fier 

task 
name 
(some 
part of 
the 
process 
in 
OM-2) 

a certain 
agent, either 
a human 
(see 
'People" in 
OM-2) or a 
software 
system (see 
"Resource" 
in OM-2)) 

some 
location in 
the 
organization 
structure 
(see OM-2) 

list of 
knowledge 
resources 
used by this 
task 

boolean 
indicating 
whether the 
task is 
considered 
knowledge- 
intensive? 

indication 
of how 
significant 
the task is 
considered 
to be (e.g., 
on a 
five-point 
scale in 
terms of 
frequency, 
costs, 
resources or 
mission 
criticality) 

Table 3.3 
Worksheet OM-3: Description of the process in terms of the tasks of which it is composed. 

Organization Model I Knowledge Assets Worksheet OM-4 I 
KNOWL- 
EDGE 
ASSET 

POS- 
SESSED 
BY 

USED IN RIGHT 
FORM? 

RIGHT 
PLACE? 

RIGHT 
TIME? 

RIGHT 
QUALITY? 

Name (cf. 
worksheet 
OM-3) 

Agent (cf. 
worksheet 
OM-3) 

Task (cf. 
worksheet 
OM-3) 

(Yes or no; 
comments) 

(Yes or no; 
comments) 

(Yes or no; 
comments) 

(Yes or no; 
comments) 

Table 3.4 
Worksheet OM-4: Description of the knowledge component of the organization model. 
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Organization Model Checklist for Feasibility Decision Document: Worksheet OM-5 
BUSINESS FEASIBILITY For a given problem/opportunity area and a suggested solution, the 

following questions have to be answered: 
1. What are the expected benefits for the organization from the 
considered solution'? Both tangible economic and intangible business 
benefits should be identified here. 
2. How large is this expected added value? 
3. What are the expected costs for the considered solution? 
4. How does this compare to possible alternative solutions? 
5. Are organizational changes required? 
6. To what extent are economic and business risks and uncertainties 
involved regarding the considered solution direction? 

TECHNICAL For a given problem/opportunity area and a suggested solution, the 
FEASIBILITY following questions have to be answered: 

1. How complex, in terms of knowledge stored and reasoning 
processes to be carried out, is the task to be performed by the 
considered knowledge-system solution? Are state-of-the-art methods 
and techniques available and adequate? 
2. Are there critical aspects involved, relating to time, quality, needed 
resources, or otherwise? If so, how to go about them? 
3. Is it clear what the success measures are and how to test for validity, 
quality, and satisfactory performance? 
4. How complex is the required interaction with end users (user 
interfaces)? Are state-of-the-art methods and techniques available and 
adequate? 
5. How complex is the interaction with other information systems and 
possible other resources (interoperablity, systems integration)? Are 
state-of-the-art methods and techniques available and adequate? 
6. Are there further technological risks and uncertainties? 

Table 3.5 
Worksheet OM-5: Checklist for the feasibility decision document (Part I). 

model and very extensively (of course) in the knowledge model. This piecemeal approach 
gives more opportunities for flexibility in knowledge project management. 

Thus, the knowledge asset worksheet 10M-4) is meant as a first-cut analysis. The 
perspective we take here is that those pieces of knowledge are significant as an asset, that 
are in active use by workers within the organization for the purpose of a specific task or 
process. An important issue in this part of the study is to single out dimensions in which 
knowledge assets may be improved, in form, accessibility in time or space, or in quality. 
This analysis is not only important in knowledge-systems engineering, but perhaps even 
more so in knowledge management actions in general. 

3.3.5 Feasibility Decision-Making 

Now, after carrying out the steps represented in the worksheets of Tables 3.1-3.4, we have 
all the information ready related to the CommonKADS organization model of Figure 3.1. 
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Organization Model Checklist for Feasibility Decision Document: Worksheet OM-5 
(continued) 

Project feasibility For a given problem/opportunity area and a suggested solution, the 
following questions have to be answered: 
1. Is there adequate commitment from the actors and stakeholders 
(managers, experts, users, customers, project team members) for 
further project steps? 
2. Can the needed resources in terms of time, budget, equipment, 
staffing be made available? 
3. Are the required knowledge and other competences available? 
4. Are the expectations regarding the project and its results realistic? 
5. Are the project organization and its internal as well as external 
communication adequate? 
6. Are there further project risks and uncertainties? 

Proposed actions This is the part of the feasibility decision document that is directly 
subject to managerial commitment and decision making. It weights 
and integrates the previous analysis results into recommended concrete 
steps for action: 
1. Focus: What is the recommended focus in the identified 
problem-opportunity areas? 
2. Target solution: What is the recommended solution direction for 
this focus area? 
3. What are the expected results, costs, and benefits? 
4. What project actions are required to get there? 
5. Risks: If circumstances inside or outside the organization change, 
under what conditions is it wise to reconsider the proposed decisions? 

Table 3.6 
Worksheet OM-5: Checklist for the feasibility decision document (Part II). 

The final step is to wrap up the key implications of this information in a document, on the 
basis of which commitments and decisions by management are made. At this stage of a 
knowledge system project, decision-making will focus on: 

• What is the most promising opportunity area for applications, and what is the best 
solution direction? 

• What are the benefits versus the costs (business feasibility)? 
• Are the needed technologies for this solution available and within reach (technical 

feasibility)? 
• What further project actions can successfully be undertaken (project feasibility)? 

Tables 3.5 and 3.6 present an extensive and self-contained checklist for producing 
the feasibility decision document (worksheet OM-5). This completes the CommonKADS 
organizational analysis. The further stages focus more on the features of specific tasks, 
pieces of knowledge, and individuals involved. But before going into these topics, we will 
first further illuminate the above organization analysis by an illustrative case example. 
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3.4 Case: Social Security Services 

In this section we illustrate the above organizational model study by a real-life case study. 

3.4.1 Problem-Opportunity Context 

In the Netherlands, the administration of a range of social security benefits is carried out by 
municipalities. The most important ones are general assistance benefits. The latter category 
is an end-of-the-line type of benefit, in the sense that if no other regulations apply, a person 
may ultimately apply for this type of benefit. At the time of the project, in the municipality 
of Amsterdam, approximately 60,000 people were supported by these general assistance 
benefits. In order to qualify for this financial assistance, each applicant is screened in great 
detail. The rules for this are codified in in or can be derived from several volumes of laws 
and regulations. 

In Amsterdam, a considerable backlog in dealing with (the growing numbers of) clients 
had accumulated over the years. This led to long queues in the offices, as well as long 
elapse times between initial client intake and final decision. At the level of the directorate 
of the responsible municipal service, this backlog created concerns over the efficiency 
of the work being done. Moreover, the clients themselves started to complain about the 
delays, and these complaints found their way into the local media. In this context, the 
secretary of the directorate suggested the use of knowledge systems to help reduce the 
backlog. It is highly important to stress the initial hypothesis because it shows how crucial 
modelling organizational features is. Briefly, the initial problem/opportunity formulation 
was: 

Because the applicable laws and regulations are so complex, it takes a long 
time for the staff involved to reach a decision. If we can assist these peo-
ple with a knowledge system that stores the needed legal decision-making 
knowledge, the decision process can be speeded up, so that more clients can 
be served in the same time and the application backlog will be significantly 
reduced. 

Thus, at the beginning a very clear idea existed about the problem area, the direction 
of the solution, and the benefits for the organization at large. Although we give this part 
of the case study in a narrative form, it is obvious how the above information constitutes 
fillers for the invariant components of the organization model, according to the problems 
and opportunities worksheet (Table 3.1, worksheet 0M-1). 

3.4.2 Organization Model: Variant Components 

The next step in the study is to consider the various aspects of the organization model, 
as indicated in Figure 3.1 and particularly in the variant component worksheet (Table 3.2, 

t4 



The Task and Its Organizational Context 37 

worksheet OM-2). For the social security service case, we briefly discuss the main ele-
ments and results below. 

Structure The formal organizational structure of the social security service is given in 
the form of an organization chart, as presented in Figure 3.3. The service consists of a 
central office and a branch office in each of the sixteen boroughs of the municipality of 
Amsterdam. The structure of each of these branch offices is the same. The central office 
has a mixture of line and staff departments. In addition, the chart includes the computer 
center of the municipality of Amsterdam, although it is strictly speaking not a part of 
the service organization (hence the dotted lines). However, it is important to include the 
connection, since the computer center performed a sizable amount of work for the social 
security service, and (at that time) every municipal institution was formally required to use 
this center for all its computer work. 

People In a complex organization, there are many different people playing many different 
organizational roles, requiring very different levels of expertise. Given the brief for the 
project (see the problem-opportunity component of the organization model), only a very 
limited area has been taken into account, mostly staff members that are directly involved 
in some way in the decision-making process. 

The major roles played by people in the organization in our case can be found in 
Figure 3.3. 

Culture and power Power relations among the main people in the organization are 
shown in Figure 3.4. This figure shows not only formal relationships of authority between 
people but also informal influencing relationships. 

To get a grip on these aspects is often not easy, because informal relationships between 
disparate actors may be difficult to detect. Three types of power relationships are shown 
in Figure 3.4. Strong official lines of formal authority are indicated by solid lines. These 
relations are formally laid down in the organization and its hierarchy. For example, the 
branch director is the boss of a branch office, and as such has formal authority over chiefs 
and testers in this office. Rather strong informal power relations are shown in the figure 
by means of dashed lines. These relations have often slowly grown over time, and have 
come to be viewed as more or less regular. For example, the regulations expert from the 
central office can convene meetings at which all testers of the branch offices are present. 
Moreover, he can use these meetings to launch certain quality-control campaigns. This 
can be done almost without interference from the branch director, in spite of his formal 
authority over the tester in the branch office. Finally, weak informal relations of influence 
are the hardest to uncover, because they reflect occasional but sometimes very important 
links between persons in the organization (see dotted lines in Figure 3.4). This influence is 
mainly exercised through informal meetings and telephone calls. 
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Figure 3.3 
The structure component in the social security service case. 

Resources For the present project, the following resources were deemed to be most rel-
evant: 

• Computers: In the service as a whole, at the time of the project, only a limited number 
of computers were available. All computing was done by the central computer Center 
(see Figure 3.3). In each of the branch offices there were a few terminals connected to 
the central computer. In some branch offices, local experiments with personal comput-
ers had started to take over routine work, such as producing letters of notification. 

• Office space: Some branch offices were inadequately housed, leading to insufficient 
facilities for doing the client intake work. 

if 
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Figure 3.4 
Various power relationships in the social security service case. 

Process, knowledge As follows from the brief for the project, the main focus was the 
knowledge for the decision-making process about benefits by the social security service. 
These aspects are treated separately in the next subsection. 

Generally, we note that a flexible use of the organization model and its representation 
techniques gives the best results. It is neither always helpful nor necessary to fill in all slots 
of all organization model components and worksheets. This should only be done if the 
information bears relevance to conclusions and has implications for action. However, this 
selectivity must be a conscious decision on the part of the knowledge engineer, whereby 
the given worksheets provide guidance as comprehensive checklists. In addition, the form 
of representing the collected information will generally vary. Short pieces of text, e.g., 
filling in slots of worksheets, are useful, but as we have seen sometimes simple diagrams, 
charts, or pictures are much more clear and effective. Thus, the knowledge engineer should 
feel free to pick the most appropriate form. The criterion here is what means will be the 
most effective in communicating with the persons for whom the study is carried out. 
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3.4.3 Process Breakdown and Knowledge Assets 

The process and knowledge components of the organization model are modelled with the 
help of separate worksheets (Table 3.3, worksheet OM-3, and Table 3.4, worksheet OM-4, 
respectively). Now, we will give the most important results, in various forms, for the pro-
cess breakdown in tasks and the associated knowledge assets in the social security service 
case. 

Process breakdown in tasks On the basis of interviews with key personnel, among oth-
ers the secretary of the directorate, the following main parts (tasks) of the overall process 
were identified. 

• Intake: This task refers to obtaining all relevant information about a client, for example, 
age, address, additional sources of income, various aspects of the personal situation of 
the client. Direct person-to-person contact is commonly involved in the intake work. 

• Archiving: Keeping and maintaining files and documents for all clients throughout the 
life cycle of their being clients of the social security service. 

• Decision-making: Taking the decision, based on the data concerning the personal sit-
uation of the client (as obtained from the intake work) and the applicable laws and 
rules, whether the client qualifies for a benefit, as well as deciding about the amount of 
money he or she is entitled to. 

• Notifying: Informing the client about the decisions made. Without a written notification 
a decision has no legal status. 

• Reporting: Writing an internal report about the client. This report serves, for example, 
as input for paying. 

• Paying: Making the actual payment to the client. 
• Quality control: Controlling whether the decisions made are correct in view of the 

applicable laws and regulations. This control task is carried out "after the fact." It is 
based on sampled cases from the decision-making task, as laid down in the reporting 
task. 

An overall view of what the process looks like, in terms of the tasks it is composed 
of and their mutual dependencies, is shown in Figure 3.5. Some tasks, such as archiving, 
occur at several points within the process. There is a distinction between the primary 
process and the supporting tasks (see the two "compartments" in Figure 3.5). 

The start focus of the project was on the decision-making task, but now it has become 
clear that it is directly linked to the intake and notifying tasks, and that in addition there is 
likely to be some interaction with the archiving task. 

Knowledge assets and task significance From the study it became clear that only some 
of the tasks were knowledge intensive, namely intake, decision-making, and quality con-
trol. In intake, other competences are also important, particularly interpersonal and com-
munication skills. As the project's focus was on speeding up decision-making, it was a 
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Figure 3.5 
Activity diagram of the tasks in the business process of the social security service. 
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Figure 3.6 
Task significance: Workload in the social security service case, expressed in percentage of total time spent. 

straightforward step to investigate in more detail the knowledge underlying the decision-
making task. Given the above process results, it was also natural to look at the intake and 
notifying tasks, since there are direct input-output dependencies with decision-making. 

After some initial knowledge acquisition it became clear that there are at least two 
aspects of decision-making that were insufficiently understood, and therefore might com-
promise the construction or functioning of the envisaged knowledge system. First, clients 
sometimes cheat about their data in order to qualify for a benefit. Detecting this is a highly 
sensitive process that relies strongly upon all kinds of nonverbal cues. Personnel doing the 
intake were very good at interpreting these cues. A knowledge system, however, will of 
course have a very hard time in distinguishing between such true and (slightly) false client 
data. 

Second, civil servants do have the (understandable) tendency to sometimes adjust the 
client data somewhat when they feel a client is justified in getting the benefit but the official 
rules do not cover the special case. Again, a knowledge system would entirely miss this 
point of fudging client data. It would produce advice that is, strictly speaking, correct, but 
that does not take into account special circumstances. This would make at least some of 
the proposed decisions hard to accept for the responsible decision-makers. Both the cheat 
and fudge factors represents a delicate gray area in decision-making. It lies outside the 
competence of a knowledge system, consequently restricting its scope and usability. 

Finally, as a check on the initial project hypothesis that the problem source was related 
to the decision-making task, a field study was undertaken to estimate the actual workload 
for the various tasks within the process. During two weeks the work of the people in a 
number of sampled branch offices was followed closely. During this investigation it was 
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captured how often decision-making problems occurred as a result of the complexities of 
the regulations, and how this was reflected in the average workload. The results are shown 
in Figure 3.6. 

A striking result of this analysis is that the major workload is not due to the complexity 
of decision-making. Over 60% of the time is spent in archiving and reporting. This was the 
result of the paper-based archives in use at that time in the social security service. Much 
time had to be spent in finding lost client files, and overcoming or bypassing all kinds of 
bureaucratic hurdles and procedures. 

In order to assess the relative task significance (cf. Table 3.3, worksheet OM-3) these 
observations are of prime importance. It yields one clear quantitative measure of the rel-
ative significance of tasks in the process. If we take time spent as an indicator of process 
cost (which is probably quite adequate in this case), it is evident that the cost and inef-
ficiency drivers are in archiving and reporting, rather than in decision-making. Even if 
decision-making could be fully automated (which is judged to be highly unrealistic given 
the nature of the knowledge assets), the maximum gain would be about 10% (as seen from 
Figure 3.6) relative to the total process. Much more modest improvements (more realistic 
and easy to achieve, say on the order of 10% only) within archiving and reporting would 
already result in similar gains relative to the overall process. Thus, focusing on these tasks 
is much more likely to result in speeding up the total process and reducing backlogs. 

3.4.4 Scope and Feasibility Decision-making 

Given the above results of the organization model study, ample material is now available 
for well-founded decision-making on feasibility and scope. Very briefly, following the 
format given for this in worksheet OM-5 the main proposed conclusions and decisions are 
as follows. 

Business feasibility From the study it is clear that building a knowledge system for 
decision-making will not, in itself, solve the problem. Higher benefits in speeding up the 
overall process can be expected by focusing on improvements in archiving and reporting 
instead. Quantitative indicators have been given above. The knowledge-system solution 
would be limited with respect to needed changes in the organization. It would require 
a more decentralized PC-based computer infrastructure, and associated changes with re-
spect to the individual offices. Also, the position of the testers would clearly change, while 
people at the intake might lose some of their discretionary power in making "gray area" 
decisions. If archiving and reporting is chosen as the target area, the impact on the organi-
zation is likely to be much more important. As can be seen by comparing the structure and 
process/task components of the organization model, several different departments play a 
role, and moreover these tasks reoccur at different places in the overall process. Even the 
external computer center, largely outside the control of the organization, would have to be 
involved. 
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Technical feasibility The main technical risk associated with the knowledge system ac-
cording to the above analysis is how to deal with (or perhaps better, how to leave it to hu-
mans) the gray aspects (improper cheat or fudge data) of decision-making. These provide 
very good examples of tacit knowledge in the organization, hard to explicate and formalize 
in a computational fashion. The alternative solution, focusing on improving archiving and 
reporting, did not appear to pose technical risks, at least at the first stage (we mention in 
passing that it did later on). 

Project feasibility For the knowledge-system solution, the technical risk combined with 
the limited benefits expected in terms of time saved gives rise to wonder whether it is 
wise to continue now in the initially suggested direction. On the other hand, a project 
targeted at archiving and reporting would need, as a first step, to ensure participation and 
commitment from the various actors, or need to downscale desired procedural changes to 
a more restricted and local level to start with. 

Proposed actions Based on the organization model results, the best proposal obviously 
is to redirect the project from a knowledge system for decision-making, to simplifying the 
workflow and procedures related to archiving and reporting. Therefore, it was proposed 
to refrain from building a knowledge system for decision support, and to start working on 
the bottlenecks in archiving, which were now perceived — due to the organization model 
study — as the most crucial ones in dealing with the application backlog. 

This case study shows how important it is to pay attention to organizational factors at 
an early stage, and it shows the capability of the CommonKADS methodology to clarify 
these factors in a step-by-step manner. This is even more pressing when the results are 
different from what one expects at the beginning, as was the case here. However, the 
experience described in the case study is not at all uncommon in practice. It points to an 
important lesson ensuing from knowledge management. As knowledge in an organization 
is often tacit, one should not be surprised when it turns out to be quite different from what 
you initially expect. 

33 Impact and Improvement Analysis: Task and Agent Modelling 

We now imagine that a feasibility study has been concluded positively, and that the knowl-
edge project has got the green light to continue. So, it's time to take the next step, and 
to zoom in on the features of the relevant tasks, the agents that carry them out, and on 
the knowledge items used by the agents in performing tasks. All these aspects refine the 
results from the organization model. For their description CommonKADS offers the task 
and agent models. The outcome of this study is detailed insight into the impact of a knowl-
edge system, and especially what improvement actions are possible or necessary in the 
organization in conjunction with the introduction of a knowledge system. 
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Figure 3.7 
Overview of the CommonKADS task model. 

The notion of task, although important, has different connotations. As a commonsense 
concept, it is a human activity to achieve some purpose. In the above organizational study 
it has been viewed in the (not incompatible) sense of a well-defined subpart of a business 
process. The notion of task has also emerged as a crucial one in the theory and methodol-
ogy of knowledge systems and of knowledge sharing and reuse. Later we will see that it is 
a core technical concept in the modelling of expertise. 

Thus, we need a link between the notion of task in the human and organizational sense 
of the word, and the more information systems-oriented concept we will employ later 
on. The CommonKADS task model serves as this linking pin between the organizational 
aspect and the knowledge-system aspect of a task. 

In this perspective, the following definition is suitable. A task is a subpart of a business 
process that: 

• represents a goal-oriented activity adding value to the organization; 
• handles inputs and delivers desired outputs in a structured and controlled way; 
• consumes resources; 
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• requires (and provides) knowledge and other competences; 
• is carried out according to given quality and performance criteria; 
• is performed by responsible and accountable agents. 

A corresponding impression of the CommonKADS task model is depicted in Fig-
ure 3.7. 

3.5.1 Task Analysis 

Following this definition (and Figure 3.7) of what a task is, the information covered in the 
task model is specified with the help of worksheet TM-1, given in Table 3.7. It can be 
viewed as a refinement of the data from worksheet OM-3 (Table 3.3). 

A few points are worth noting here. Some of the items in the task model, such as 
value, quality, and performance, refer directly to organizational considerations. They pre-
dominantly have a management and business administration flavor. Here, CommonKADS 
provides the opportunity to integrate information from, e.g., quality assurance systems ex-
isting in the organization. 

Other items in the task model, notably dependency/flow, objects handled, and 
time/control, have a natural link with state-of-the-art approaches to information-systems 
modelling, such as structured analysis and design, information engineering, and object-
oriented methodology. In all these approaches, we find what we may call a three-
dimensional view on information modelling. Such a 3D information model consists of 
the following dimensions: 

Functional view  A decomposition into subtasks, their inputs and outputs, and the I/O 
flow connecting these subtasks into an overall information flow network. Traditional data-
flow diagrams are a widely used technique here. If you want to use a UML notation the 
best candidate is (again) an activity diagram (see the object-flow notations in Section 14.2). 
Static information structure  A description of the information content and structure of 
objects that are handled in the task, such as its input and output objects, in terms of entities 
and their relationships (or objects and associations). The UML class diagram is the notation 
of choice for modelling the information structure. This simplifies the link with subsequent 
detailed knowledge modelling. The main ingredients of the UML class-diagram notations 
can be found in Section 14.4. 
Control or dynamic view  A description of the temporal order of and control over the 
subtasks, providing a picture of the triggering events, decision-making points, and other 
knowledge about time aspects. Depending on the type of control, this aspect is commonly 
represented by means of either state diagrams (in case control is dominated by external 
events or is strongly asynchronous) or by means of activity diagrams (in case of (mostly) 
synchronous internal control). A quick introduction to state diagrams can be found in 
Section 14.3. 
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Task Model Task Analysis Worksheet TM-1 

TASK Task identifier and task name 
ORGANIZATION Indicate the business process this task is a part of, and where in the organization 

(structure, people) it is carried out 
GOAL AND VALUE Describe the goal of the task and the value that its execution adds to the process 

this task is a part of 
DEPENDENCY AND 
FLOW 

Input tasks: tasks delivering inputs to this task 
Output tasks: tasks that use (some of) the outputs of this task 
You can use a data-flow diagram or an activity diagram here to describe this. 

OBJECTS HANDLED Input objects: The objects, including information and knowledge items, that are 
input to the task 
Output objects: The objects, including information and knowledge items, that 
are delivered by the task as outputs 
Internal objects Important objects (if any), including information and 
knowledge items, that are used internally within the task but are not input or 
output to other tasks 
You may want to include a class diagram here to describe the information 
objects handled by the task. 

TIMING AND 
CONTROL 

Describe frequency and duration of the task. 
Describe the control relation with other tasks. For this you may want to use a 
state diagram or a activity diagram. 
Describe control constraints: 
(i) preconditions that must hold before the task can be executed; 
(ii) postconditions that must hold as result of execution of the task. 

AGENTS The staff members and/or the information systems (cf. OM-2 and OM-3) that 
are responsible for carrying out the task 

KNOWLEDGE AND 
COMPETENCE 

Competences needed for successful task performance. For the knowledge items 
involved, there is a separate worksheet TM-2. List other relevant skills and 
competences here. Indicate which elements of the task are knowledge intensive. 
Note that tasks can also deliver competences to the organization, and it may be 
worthwhile to indicate that here. 

RESOURCES Describe and preferably quantify the various resources consumed by the task 
(staff time, systems and equipment, materials, financial budgets. 
The description is typically a refinement of the resource descriptions in OM-2 

QUALITY AND 
PERFORMANCE 

List the quality and performance measures that are used by the organization to 
determine successful task execution 

Table 3.7 
Worksheet TM-1: Refined description of the tasks within the target process. 

Note that most of the time these descriptions already exist, at least partially. We also 
want to point out that the knowledge model exploits a similar multidimensional view of 
knowledge modelling. These three dimensions are clearly reflected in the items in the task 
model indicated as dependency/flow, objects handled, and time/control. Hence, the task 
model provides an integrative link with accepted standard methodology for information 
modelling and analysis. 
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3.5.2 Knowledge Bottleneck Analysis 

Next, the item of knowledge and competence is a key item in our task model, and for 
this reason it is again modelled by means of a separate worksheet TM-2, presented in 
Table 3.8. It constitutes a refinement of the data from worksheet OM-4 (Table 3.4) on 
knowledge assets. As with the other worksheets, it is rather self-explanatory. It has a 
highly important function, since it concentrates in detail on bottlenecks and improvements 
relating to specific areas of knowledge. Hence, this analysis is not only worthwhile for 
knowledge systems but is a useful step in knowledge management in general, to achieve 
superior use of knowledge by the organization. 

Much of this information can be obtained by simple and direct questions to the people 
involved. Examples are: How often do you carry out this task? How much time does 
it take? Who depends on your results? Whom do you talk to in carrying out this task? 
What do you need in order to start with it? What happens to the organization if it goes 
wrong? What may go wrong, and what do you do then? How do you know that the task 
is successfully concluded? Such questions are best asked with the help of concrete task 
examples. With the answers you can write down a task scenario. Scenario techniques are 
very helpful in getting a practical understanding, and later on they are useful in validating 
the information and setting up a system test plan. 

3.5.3 Agent Descriptions 

The above steps in the impact and improvement study were dominated by the viewpoint of 
tasks to be carried out. It is also useful to consider the information from the rather different 
perspective of individual agents (staff workers; sometimes also information systems can be 
viewed as agents). This is done in the CommonKADS agent model, displayed in Table 3.9 
by means of a rather straightforward worksheet AM-1. The purpose of the agent model is 
to understand the roles and competences that the various actors in the organization bring 
with them to perform a shared task. The information contained in the agent specification 
is for a large part a rearrangement of information already existing in previous worksheets. 
However, the present arrangement may be useful to better judge impacts and organizational 
changes from the viewpoint of the various agents. It also yields input information for other 
CommonKADS models, especially the communication model. 

To show graphically how agents participate in (new) tasks carried out by a (new) sys-
tem, it is useful to construct a UML use-case diagram. This diagram shows what services 
are provided by a "system" to agents involved. Use-case diagrams are helpful when pre-
senting potential solutions to stakeholders. A brief introduction into use-case diagrams can 
be found in Section 14.5. 
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Task Model I Knowledge Item Worksheet TM-2 
NAME 
POSSESSED BY 
USED IN 
DOMAIN 

Knowledge item 
Agent 
Task identifier and name. 
Wider domain the knowledge is embedded in (specialist field, 
discipline, branch of science or engineering, professional community) 

Nature of the knowledge Bottleneck / to be improved? 
Formal, rigorous 
Empirical, quantitative 
Heuristic, rules of thumb 
Highly specialized, 
domain-specific 
Experience-based 
Action-based 
Incomplete 
Uncertain, may be 
incorrect 
Quickly changing 
Hard to verify 
Tacit, hard to transfer 
Form of the knowledge 
Mind 
Paper 
Electronic 
Action skill 
Other 
Availability of knowledge 
Limitations in time 
Limitations in space 
Limitations in access 
Limitations in quality 
Limitations in form 

Table 3.8 
Worksheet TM-2: Specification of the knowledge employed for a task, and possible bottlenecks and areas for 
improvement. 

3.5.4 Recommendations and Actions 

Finally, with the worksheets TM-1, TM-2, and AM-1 we have collected all information re-
lated to the task and agent models (see also Figure 3.7). The remaining step is to integrate 
this information into a document for managerial decision-making about changes and im-
provements in the organization. For this purpose, Table 3.10 presents a complete checklist 
(constituting worksheet OTA-1). 

Proposed actions for improvement are accompanying measures, but are not part of the 
knowledge-systems work itself. However, they are highly important for ensuring com- 
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Agent Model I Agent Worksheet AM-1 
NAME Name of the agent 
ORGANIZATION Indicate how the agent is positioned in the organization, as inherited 

from the organization-model worksheet descriptions, including the 
type (human, information system), position in the organization 
structure, ... 

INVOLVED IN List of tasks (cf. TM- I ) 
COMMUNICATES WITH List of agent names 
KNOWLEDGE List of knowledge items possessed by the agent (cf. TM-2) 
OTHER COMPETENCES List of other required or present competences of the agent 
RESPONSIBILITIES AND 
CONSTRAINTS 

List of responsibilities the agent has in task execution, and of 
restrictions in this respect. Constraints may refer to limitations in 
authority, but also to inside or outside legal or professional norms, or 
the like. 

Table 3.9 
Worksheet AM-1: Agent specification according to the CommonKADS agent model. 

mitment and support from the relevant players in the organization. The major issues for 
decision-making here are: 

• Are organizational changes recommended and if so, which ones? 
• What measures have to be implemented regarding specific tasks and workers involved? 

In particular, what improvements are possible regarding use and availability of knowl-
edge? 

• Have these changes sufficient support from the people involved? Are further facilitating 
actions called for? 

• What will be the further direction of the knowledge system project? 

This completes the organization-task-agent analysis. Even without building knowl-
edge systems, it is likely that this analysis brings to the surface many measures and im-
provements that lead to better use of knowledge by the organization. 

3.6 Case: Ice-Cream Product Development 

Did it ever occur to you that ice cream is a very knowledge-intensive product? Ice cream, 
as simple as it may seem, actually involves deep knowledge about an amalgam of delicate 
product structures and properties, about sophisticated production processes, and last but not 
least, about consumer preferences that are often local and change over time. In a successful 
ice-cream business, these very different knowledge areas have to be strongly intertwined. 
Catering to ever-changing consumer interests in addition requires a steady stream of new 
ice-cream products that appear on the market in a timely fashion. 

Ice cream thus represents a tough knowledge management challenge. At the Unilever 
company this challenge has been taken up. As a case study, we discuss the PARIS project 
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Organization, Task, 
Agent Models 

Worksheet OTA-1: Checklist for Impact and Improvement 
Decision Document 

IMPACTS AND CHANGES 
IN ORGANIZATION 

Describe which impacts and changes the considered knowledge system 
solution brings with respect to the organization, by comparing the 
differences between the organization model (worksheet OM-2) in the 
current situation, and how it will look in the future. This has to be done 
for all (variant) components in a global fashion (specific aspects for 
individual tasks or staff members are dealt with below). 
1. Structure 
2. Process 
3. Resources 
4. People 
5. Knowledge 
6. Culture & power 

TASK/AGENT-SPECIFIC 
IMPACTS AND CHANGES 

Describe which impacts and changes the considered knowledge system 
solution brings with respect to individual tasks and agents, by 
comparing the differences between the task and agent models 
(worksheets TA-1/2 and AM-1) in the current situation, and what they 
will look like in the future. It is important to look not only at the staff 
members directly involved in a task but also other actors and 
stakeholders (decision-makers, users, clients). 
1. Changes in task layout 
(flow, dependencies, objects handled, timing, control) 
2. Changes in needed resources 
3. Performance and quality criteria 
4. Changes in staffing, involved agents 
5. Changes in individual positions, responsibilities, authority, 
constraints in task execution 
6. Changes required in knowledge and competences 
7. Changes in communication 

ATTITUDES AND 
COMMITMENTS 

Consider how the individual actors and stakeholders involved will 
react to the suggested changes, and whether there will be a sufficient 
basis to successfully carry through these changes 

PROPOSED ACTIONS This is the part of the impacts and improvements decision document 
that is directly subject to managerial commitment and 
decision-making. It weights and integrates the previous analysis results 
into recommended concrete steps for action: 
1. Improvements: What are the recommended changes, with respect to 
the organization, as well as individual tasks, staff members, and 
systems? 
2. Accompanying measures: What supporting measures are to be taken 
to facilitate these changes (e.g., training, facilities) 
3. What further project action is recommended with respect to the 
undertaken knowledge system solution? 
4. Expected results, costs, benefits: reconsider items from the earlier 
feasibility decision document 
5. If circumstances inside or outside the organization change, under 
what conditions is it wise to reconsider the proposed decisions? 

Table 3.10 
Worksheet OTA-1: Checklist for the impacts and improvements decision document. 
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Organization Model I Problems and Opportunities Worksheet OM-1 
PROBLEMS AND 
OPPORTUNITIES 

* Speed-up time to market of new ice-cream products 
* Leverage-associated knowledge across functions and sites 

ORGANIZATIONAL 
CONTEXT 

Vision and strategy: 
* Achieve a situation as depicted in Figure 3.8 
External factors: 
* Local and changing consumer preferences 
* Variety in relevant national legislation 
* Branding issues 
* Strong international competition 
Major value drivers: 
* Fast-moving alignment with local consumer markets by new product 
introductions 

SOLUTIONS Solution 1: Upgrade current IT systems for product development 
Solution 2: Develop new functionalities through knowledge systems (e.g., 
assessment, processing support) 
Solution 3: Let specific solution direction be the result of a 
stakeholder-driven process, as depicted in Figure 3.9 

Table 3.11 
Worksheet 0M-1: Problems, organizational context and possible solutions for the PARIS ice-cream project. 

which comprised a feasibility study on ways to improve knowledge management and 
knowledge-systems support for the ice-cream business at Unilever. In this and similar 
projects, the CommonKADS approach is being used as the standard methodology by the 
responsible unit for knowledge management and engineering. The PARIS study clearly 
exemplifies, first, how important organizational analyses are in IT systems strategy and de-
velopment, and second, how standard knowledge methodology supports knowledge man-
agement and engineering applications that go way beyond building knowledge systems. 

3.6.1 Ice-Cream Organization Model 

In the preparatory phase of the PARIS study, a variety of potential application ideas were 
listed by the project team, including different types of knowledge systems (design, as-
sessment, manufacturing), ways to prevent loss of skills due to retirement, and new func-
tionalities of existing conventional IT support systems. As a fundamental principle, any 
knowledge project must have active and direct support from the (in this case, ice-cream) 
business itself. Therefore, initial and open interviews were held with various business ex-
ecutives in order to establish the main directions of the PARIS project and the business 
support for them. 

OM-1: Organizational context, problems, solutions portfolio Outcomes of this initial 
analysis are shown in Table 3.11 presenting the first worksheet 0M-1. Important prob-
lem/opportunity areas were identified: (1) reducing the time to market of new ice-cream 
products, and (2) leveraging associated knowledge across different functions and sites (in 
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Figure 3.8 
A vision for ice-cream knowledge management, seen as an organizational learning feedback loop. 

view of the fact that Unilever has a range of ice-cream factories in many different countries 
spanning several continents). Interestingly, from the early business interviews a vision 
picture emerged that is presented in Figure 3.8. It shows how the different knowledge 
areas — product and development knowledge, manufacturing processes expertise, market 
knowledge — should ideally be integrated into what was described as an organizational 
learning cycle. Information systems support is important if it functions within this cycle, 
but it also became clear that such support is only one component within a broader cross-
function and cross-site ice-cream knowledge management. 

As seen from worksheet 0M-1, different solution directions are possible. At this stage, 
the PARIS project team chose not to preselect a specific system solution, but to drive 
this through a strongly stakeholder-oriented knowledge-pull project approach (thus, the 
process-oriented solution No. 3 was chosen). From the stakeholder interviews it appeared 
that the strongest knowledge pull from the ice-cream business was to be expected in the 
area of product formulation and development, for which there already was a conventional 
but limited IT support tool. The approach selected, where stakeholders in the business act 
as the project sponsors, is shown in Figure 3.9. 

OM-2: Description of focus area in the organization After the initial phase of stake-
holder interviewing, studies were done by surveying several ice-cream factories in different 
countries of Europe, as well as in the United States. The selected focus area, new product 
development, appears to be a key business process for continued market success. The sec-
ond worksheet OM-2 in Table 3.12 describes some results of this part of the study. A gen-
eral picture of the organizational structure of an ice-cream factory is given in Figure 3.10. 
Product development is the focal business process, and it has a number of major sequential 
stages running from product idea generation to product postlaunch review. However, it 



Feasibility study results 

Assess factories 

54 Chapter 3 

Identify stakeholders Interview the Develop factory 
and project sponsors stakeholders assessment approach 

Figure 3.9 
The PARIS stakeholder-driven project approach. 

is clear from the people slot that many different functional areas are involved in product 
development, even including legal staff. These strong cross-functional aspects are very 
relevant to devising knowledge management actions. 

OM-3: Breakdown of the product development business process This worksheet 
OM-3, Table 3.13, describes the main tasks giving a breakdown of the "process" slot in 
the previous worksheet OM-2. Each task listed is concluded by a go/no-go decision before 
the next product development task may commence. For any new product introduction on 
the market (many dozens every year), all tasks must have been concluded successfully, in 
the indicated sequential order. All tasks are in their own way knowledge intensive, espe-
cially the feasibility phase and to a lesser extent the planning phase. This is because the 
subtasks in these phases necessitate a more experimental approach and therefore tend to be 
iterative; the more knowledge is applied in the first cycle, the less iterations are needed. We 
note that here only the top-level task breakdown of the product development process has 
been presented. Every task mentioned in worksheet OM-3 is in its turn decomposed into a 
dozen or so subtasks. In the PARIS project they were specified in similar worksheets, but 
in this case study we can only consider a small fragment of them. 

OM-4: Example knowledge assets in the ice-cream domain The fourth worksheet, 
OM-4, gives a description of the main knowledge assets in the part of the organization we 
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Organization Model I Variant Aspects Worksheet OM-2 
STRUCTURE See Figure 3.10 
PROCESS Product development process: involves five major phases. See high-level 

breakdown in worksheet OM-3 (Table 3.13) 
PEOPLE Wide range of functional areas is involved in product development: e.g., 

marketing, sales, logistics, quality management, operations planning, 
manufacturing, and the legal department 

RESOURCES * Information systems: existing system for storage of ice-cream 
formulations, capable of making certain predictive calculations of product 
properties, used as a tool for product development managers 
* 

KNOWLEDGE Linked to the different functional areas listed above, evidently wider than 
product development sec 

CULTURE & POWER * Focus on features of own market 
* Local cross-functional interplay between marketing, process technology 
and operations people 

Table 3.12 
Worksheet OM-2: Description of variant organization aspects of an ice-cream factory. 
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Figure 3.10 
A typical organization structure of an ice-cream company. 
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Organization Model I Process Breakdown Worksheet OM-3 
No. TASK PER- 

FORMED 
BY 

WHERE? KNOWL- 
EDGE 
ASSET 

KNOWLEDGE 
INTENSIVE? 

SIGNIFI-
CANCE 

Product 
idea 
genera- 
tion 

Marketing, 
develop- 
ment 
(mainly) 

— New 
product- 
market 
combina- 
tions 

Yes Any new 
product must 
subsequently 
pass all listed 
tasks 
successfully 

2 Feasibil- 
ity 
phase 

Develop- 
ment core 
team 
formed 
from several 
departments 

Concept de- 
velopment, 
experimen-
tation, and 
testing 

Very high See above 

3 Produc- 
tion and 
sales 
planning 

Packaging, 
manufactur- 
ing (and 
others) 

— Capabilities 
evaluation, 
experimen-
tation, and 
planning 

High See above 

4 Imple- 
menta- 
tion and 
rollout 

Manufactur- 
ing, 
packaging, 
quality, 
training, 
marketing 

— Operations 
expertise 
for the 
various 
functional 
areas 

Yes See above 

5 Post- 
launch 
review 

Various Evaluation, 
standards 
confor- 
mance 

Medium See above 

Table 3.13 
Worksheet OM-3: Top-level task breakdown for the ice-cream product development process. 

are focusing on. In Table 3.14 a small fragment is shown of the knowledge asset analysis 
related to the feasibility task within the product development process. The task typically 
requires knowledge from a number of different areas, and moreover it is performed by staff 
from different departments. Thus, communication and sharing of knowledge is highly im-
portant, the more so because ice-cream products are becoming increasingly complex. This 
is why ice-cream processing knowledge (mixing, freezing, extrusion, etc.) is sometimes at 
the wrong place — available at one department, but needed at another one. Furthermore, 
ice-cream processing knowledge is often heuristic, experiential, and incomplete, so that its 
quality is an issue. In contrast, finished product specifications can be clearly nailed down, 
but a more appropriate and faster form (more electronic, less paper-based) would facilitate 
knowledge sharing. 
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Organization Model I Knowledge Assets Worksheet OM-4 
, - 

KNOWL- 
EDGE 
ASSET 

Pos - 

SESSED 
BY 

USED IN RIGHT 
FORM? 

RIGHT 
PLACE? 

RIGHT 
TIME? 

RIGHT 
QUALITY? 

Concept 
develop- 
ment and 
testing: 
ice-cream 
processing 

Manufac- 
turing 

2. 
Feasibility 
phase 

Yes No (needed 
at Devel- 
opment) 

Yes No (in-
complete, 
heuristic) 

... ... ... ... ... 
Concept 
develop- 
ment and 
testing: 
finished 
product 
specifica-
tion 

Develop- 
ment core 
team 

2. 
Feasibility 
phase 

No: paper 
form too 
limited 

Yes Yes Yes 

Table 3.14 
Worksheet OM-4: An excerpt from the knowledge assets analysis. 

OM-5: First decision document: Knowledge-improvement scenarios The final work-
sheet of the organization model, OM-5, intends to indicate the feasibility of potential so-
lutions to perceived organizational problems. In the present case, the stakeholder-oriented 
process approach combined with the ice-cream organization model led, first, to a clear 
identification of the main knowledge bottlenecks and, second, to a number of different op-
portunities for knowledge improvement. It was concluded that especially the feasibility 
phase of ice-cream product development was highly knowledge-intensive, with knowledge 
bottlenecks related to properties (e.g., sensory, physical) of raw materials and of products, 
and related to ice-cream processing and associated equipment. The most important goals 
for knowledge management and IT/knowledge system development were defined to be the 
speedup of the time to market of new products, and (consequently) the quick dissemination 
of knowledge across different functional departments involved in product development. 

To this end, the PARIS project group came up with different knowledge-improvement 
opportunities, called scenarios. These scenarios refer to different aspects of ice-cream 
product development, and carry corresponding names. Among them there was a process-
ing scenario (make explicit the effects of processing on product properties), an optimization 
scenario (provide procedures to optimize one or more parameters in the whole product for-
mulation), a supply chain scenario (design a system to follow one ice-cream brand through 
the whole process chain from raw materials sourcing to final product storage and distribu-
tion), knowledge transfer scenario (create methods for quicker dissemination of research 
knowledge to the business units), and so on. 
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Organization Model Checklist for Feasibility Decision Document: Worksheet OM-5 
BUSINESS 
FEASIBILITY 

Based on the organization-model analysis, the most important knowledge 
bottlenecks in product development have been clarified. In addition, a number 
of different scenarios for knowledge improvement opportunities have been 
identified for product development, e.g., a processing scenario, optimization 
scenario, supply chain scenario, internal knowledge transfer scenario. Each 
scenario represents a promising, feasible (to varying degrees), but different 
solution direction. 

TECHNICAL 
FEASIBILITY 

An important requirement is that any new system, including knowledge-based 
modules, has to fit into the overall IT strategy and must be interoperable with 
currently used tools. This is a reason to consider an upgrade of the existing 
product formulation and development tool. As any new IT system will make 
key business knowledge more explicit and available in a rather centralized way, 
very sound security measures are crucial. 

PROJECT 
FEASIBILITY 

Due to the stakeholder-driven approach, there is good basis for further work. To 
maintain support, it is advisable to develop and demonstrate a first knowledge 
module that demonstrates limited but visible results at an early stage. 

PROPOSED ACTIONS * Further rank and prioritize the knowledge improvement scenarios, by detailed 
task/agent/knowledge item analysis, leading to both short-term and mid-term 
recommendations and actions. 
* Consider how the current IT architecture can be gradually extended to a 
broader and more knowledge-intensive support environment. 
* Select a first system module with a high potential impact that can be 
developed relatively quickly. 

Table 3.15 
Worksheet OM-5: First decision document, comprising various feasible knowledge-improvement scenarios for 
product development. 

As an outcome of this part of the study, a decision was taken to further refine, as-
sess, and prioritize the suggested knowledge-improvement scenarios, and to select a first 
knowledge module for rapid development and demonstration. This further detailing and 
decision-making was done on the basis of task/agent modelling. 

3.6.2 Ice-Cream Task/Agent Modelling 

From the ice-cream organization model study it became clear that all tasks in product de-
velopment are knowledge-rich, but this conclusion turned out to be particularly strong for 
the feasibility phase task within the product development process. Therefore, we consider 
the task model for this feasibility task in greater detail. The task model has two associated 
worksheets. The first, TM-1, gives a refined task decomposition and analysis. The second 
worksheet, TM-2, takes a closer look at the knowledge items involved in the task. Both 
worksheets are similar to, but more detailed than, the corresponding worksheets OM-3 and 
OM-4 of the organization model. 
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Task Model I Task Analysis Worksheet TM-1 

TASK 2. Feasibility phase task 
ORGANIZATION Part of the ice-cream product development process; different departments 

involved (see Table 3.12, Table 3.13, and Figure 3.10) 
GOAL AND VALUE This task aims to establish the feasibility (in terms of both product properties, 

processing requirements, packaging, and marketing needs) of a new product 
idea, by turning this into an finished and agreed-upon product specification. 
This task is a necessary (but not sufficient) precondition for new product 
introduction to the market. 

DEPENDENCY AND 
FLOW 

Input tasks: Product idea generation 
Output tasks: Production and sales planning 
For task decomposition and flow: see Figure 3.11 

OBJECTS HANDLED Input objects: Marketing brief 
Output objects: Finished product specifications 
Internal objects: See Figure 3.11 

TIMING AND 
CONTROL 

Frequency: In the order of dozens of times per year, but variable 
Duration: Several months, but variable 
Control: See Figure 3.11; for each new product this task must be carried out. 
Constraints: National legal requirements must be satisfied, including 
environmental and safety regulations 

AGENTS From various functional areas; cf. OM-2 and OM-3 for examples 
KNOWLEDGE AND 
COMPETENCE 

Variety of domains; cf. OM-4 and TM-2 for examples 

RESOURCES Time is a resource of prime importance here, particularly because trials for 
product and production testing are by their nature highly iterative and 
time-consuming 

QUALITY AND 
PERFORMANCE 

ISO 9000 standards (e.g., development, production); environmental life-cycle 
analysis (LCA) indicators (e.g., packaging) 

Table 3.16 
Worksheet TM-1: Analysis of the "feasibility phase" task within the ice-cream product development business 
process. 

TM-1: Business task decomposition and analysis Worksheet TM-1 in Table 3.16 
zooms in on the feasibility task, numbered 2 in the product development process breakdown 
of worksheet OM-3 (Table 3.13). The task structure of the feasibility phase is depicted in 
Figure 3.11, which again brings out the cross-functional nature of ice-cream product de-
velopment. 

TM-2: Detailed knowledge bottleneck analysis In the task model we also take a closer 
look at the knowledge assets involved in the task. Worksheet TM-2 is used for this purpose 
(it speaks of knowledge items, which are just further detailed knowledge assets of smaller 
grain size; there is no principal difference). In this worksheet we characterize the nature 
of a knowledge item in terms of attributes related to nature, form, and availability of the 
knowledge. In the feasibility phase task, many different knowledge items are involved. We 
already saw a few examples in worksheet OM-4 (Table 3.14). For every knowledge item 
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Figure 3.11 
Flow diagram for the subtasks of the feasibility phase task within ice-cream product development. 

in a task, a separate worksheet TM-2 is needed. In Table 3.17 we show one instance of this 
worksheet for the knowledge item "consumer desires." 

As remarked previously in this chapter, the agent model rearranges organization and 
task information from the perspective of the implications for a specific agent or actor. For 
space reasons, we do not discuss the ice-cream agent model here. Instead, based on the 
TM-1 and TM-2 task model results it was possible to rank and prioritize the different 
knowledge-improvement scenarios listed in worksheet OM-5 (Table 3.15). The results of 
the scenario comparison are given in Table 3.18. 

OTA-1: Decision summary of recommendations and actions We complete the Com-
monKADS context analysis for ice-cream product development with worksheet OTA-1. 
It summarizes the proposed organizational recommendations, improvements, and actions. 
The worksheet for the ice-cream case is shown in Table 3.19. From the comparison of 
knowledge-improvement scenarios in Table 3.18, it appears that the processing and opti-
mization scenarios are the most promising ones. Hence, the short-term recommendations 
(A and B in Table 3.19) were directed toward this. Also, a number of longer-term rec-
ommendations emerged from the study (e.g., C and D in Table 3.19; a number of other 
recommendations made are not shown here). With the decision-making baseline contained 
in worksheet OTA-1, underpinned by the organization, task, and agent models, and related 
support documentation (interviews, data, reports), the CommonKADS context analysis is 
concluded, and ready for decision-making. In the ice-cream case study, the context analysis 
documents were complemented by a follow-up draft project charter and contract (see the 
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Task Model I Knowledge Item Worksheet TM-2 
NAME 
POSSESSED BY 
USED IN 
DOMAIN 

Consumer desires 
Marketing, research 
2. Feasibility phase 
Ice-cream consumer marketing 

Nature of the knowledge Bottleneck / to be improved? 
Formal, rigorous 
Empirical, quantitative X 
Heuristic, rules of thumb X 
Highly specialized, 
domain-specific 

X 

Experience-based X 
Action-based 
Incomplete X X 
Uncertain, may be 
incorrect 

X 

Quickly changing X 
Hard to verify X X 
Tacit, hard to transfer X X 
Form of the knowledge 
Mind X X 
Paper 
Electronic 
Action skill 
Other 
Availability of knowledge 
Limitations in time 
Limitations in space X X 
Limitations in access 
Limitations in quality X X 
Limitations in form 
Remarks: Consumer desires constitute a difficult area for several reasons: (i) how 
to find out what the consumer actually wants; (ii) how to identify and interpret 
consumer desires; (iii) how they relate to properties of the ice-cream product. 

Table 3.17 
Worksheet TM-2: Characterization of the "consumer desires" knowledge item. 

final part of Figure 3.9). These summarized the impacts of the proposed knowledge system 
module on the organization from a business perspective, in a form suitable for presentation 
to and assessment by the project stakeholders. 

Some PARIS afterthoughts After this feasibility and improvement study, the decision 
was taken to build a knowledge system module as proposed. The focus of this PARIS 
system was on ice-cream processing knowledge for product developers, and several trials 
were run with end users. A case study confirmed that the system could lead to a reduction 



62 Chapter 3 

First module 
opportunity 

Available 
knowledge 

Technical 
feasibility 

Potential 
benefits 

Costs Risks 

Processing scenario Good Good Good Medium Low 
— — 

Optimization scenario Medium Medium / 
poor 

Good High Medium 

... ... ... 
Supply chain scenario Medium / 

poor 
Medium Poor Medium High 

Knowledge transfer 
scenario 

Good Good Unknown High Medium 

Table 3.18 
Comparison of knowledge-improvement scenarios in the ice-cream case, based on task and knowledge asset 
analysis. 

Organization-Task- 
Agent 
Models 

Checklist for Impact and Improvement Decision Document: 
Worksheet OTA-1 

IMPACTS AND CHANGES 
IN ORGANIZATION 

For proposals A and B below, meant as short-term recommendations, these 
are relatively limited. 
Proposals C and D, intended for the midterm, require the setup of a proper 
archive maintenance process (C), and the design of new cross-site team 
meetings and reporting (D). 

TASK/AGENT-SPECIFIC 
IMPACTS AND CHANGES 

Product developers may have to take on new knowledge-archiving and 
maintenance tasks. 
Members of cross-site teams will have new knowledge-sharing and 
reporting tasks, which takes time off their earlier, normal duties. 

ATTITUDES AND 
COMMITMENTS 

The short-term proposals have been positively received. The midterm 
recommendations need further investigation in this regard, because they 
bring with them new duties for various parties. 

PROPOSED ACTIONS A. Develop a first knowledge module for ice-cream processing, so that 
product developers can consider manufacturing knowledge upfront in 
concept development. 
B. Start preparations for the addition of an optimization function to the 
existing (conventional) product development tool. 
C. Archive past formulations and the experiences with them in electronic 
form. 
D. Develop structured knowledge management approaches to facilitate 
knowledge sharing in multidisciplinary, cross-site teams. 

Table 3.19 
Worksheet OTA-1: Summary of organizational recommendations and actions in the ice-cream case. 
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of needed tests in product development, thus saving time in line with the original goal. A 
less anticipated result of PARIS was that less experienced developers were quite pleased 
with the system, as a result of having so much "knowledge at your fingertips." In hind-
sight, one of the knowledge engineers involved in the PARIS project concluded that the 
fundamental stakeholder-driven approach was a crucial choice. No system project can do 
without organization analysis and support if it intends to be successful. One of the con-
clusions drawn from the PARIS project is that this stakeholder-oriented approach must be 
proactively continued also during systems design and even after installment and handover. 
Namely, organizations are dynamic entities, people regularly move to different jobs, and so 
the organizational support for IT systems activities must be actively maintained all along 
the way. 

3.7 Guidelines for the Context Modelling Process 

To summarize, organizational aspects often constitute the critical success factor for the 
introduction of knowledge systems. Envisaged systems must be well-integrated within the 
overall business process, and accepted in their task as knowledge provider by the user. In 
this chapter, we have shown how task and organization analysis is applied for this purpose. 
This has been illustrated by some real-life case studies. Also Chapter 10 contains a full-
fledged case study. 

For this analysis, the CommonKADS methodology offers three models: the organiza-
tion, task, and agent models. These models provide a solid basis for decision-making, first, 
concerning opportunities offered by and the feasibility of envisaged knowledge-system 
solutions, and second, concerning specific impacts on and measures to be taken by the 
organization to improve the use of knowledge. 

The process of building these models proceeds in a number of small steps. First, a 
scoping and feasibility study is carried out: 

a. identifying problem/opportunity areas and potential solutions, and putting them into a 
wider organizational perspective; 

b. deciding about economic, technical, and project feasibility, in order to select the most 
promising focus area and target solution. 

The CommonKADS organization model provides the tool for this scoping and feasi-
bility analysis. Subsequently, an impact and improvement study, for the selected target 
area and solution is undertaken: 

a. gathering insights into the interrelationships between the task, agents involved, and use 
of knowledge for successful performance, and what improvements may be achieved 
here; 

b. deciding about organizational measures and task changes, to ensure organizational ac-
ceptance and integration of a knowledge-system solution. 
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Figure 3.12 
A road map for carrying out knowledge-oriented organization and task analysis. 

As tools for this part of the analysis, CommonKADS offers the task and agent models. 
Building all of these models is done by following a series of small steps supported by prac-
tical and easy-to-use worksheets and checklists. In this way, a comprehensive picture of 
how an organization uses its knowledge is built up. Constructing in this way a knowledge 
atlas of the organization starts with an understanding of the broader organizational context. 
Then, we progressively zoom in on the promising knowledge-intensive organizational pro-
cesses, guided by previous modelling results all along the line. This enables, as well as 
requires flexible knowledge project management. 

A pictorial overview of the process of organizational context modelling is given in 
Figure 3.12. Accordingly, organization and task analysis constitutes in our opinion a key 
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professional competence of knowledge engineers. From practical experience there are 
some good guidelines for the process of carrying out an organization and task study: 

• Identify the stakeholders (knowledge providers, users, decision-makers) of your project 
at an early stage. Interview them, also separately. Learn to understand their perspec-
tives and interests, to the extent that you can explain them to others. 

• Consider the support that exists in the organization for proposed knowledge solutions. 
Clearly differentiate the interests from different stakeholder groups. You may do this 
by making an evaluation matrix, with the list of stakeholder groups as one dimension, 
and the list of possible knowledge solutions as the other. Explicate for yourself the 
different criteria that each stakeholder group will use to judge, support, or resist pro-
posed changes and solutions. Be sensitive to the fact that some of this may be tacit: the 
unwritten rules of the game in the organization. 

• Ask concrete, factual questions in interviews to clarify how tasks are carried out and 
what they require. Ask for and use concrete examples. You really understand a business 
process or task if you are able to write a script or scenario for it. 

• Business process analysis is an important activity in knowledge projects, because here 
often lies the key to improvements. Process models can be understandably expressed 
by means of various types of flow diagrams or charts, such as IDEF diagrams or UML 
activity diagrams. Distinguish between the primary process leading to the main product 
or service of an organization, and secondary processes that have a support role. 

• It is very helpful to indicate in process models what subprocess is carried out by what 
part of the organization. This can be achieved by making a matrix where the subpro-
cesses are put along the horizontal axis, and the organization subparts along the vertical 
axis. Subsequently adding the flow connections between subprocesses then shows very 
clearly the working relationships between the subparts of the organization in the overall 
process. 

• A similar matrix technique is helpful in evaluating how big or small the support within 
the organization is for alternative knowledge solutions. Put the organization subparts 
or stakeholders on the horizontal axis, and the evaluation criteria (as proposed by dif-
ferent stakeholders) on the vertical axis. Then put in the matrix cells the associated 
score, e.g., on a five-point scale (1 = very much against, 3 = neutral, 5 = strongly in 
favor). Such an evaluation matrix explicates very well the different views on alternative 
solutions and simplifies their ranking. An example of this technique is presented in a 
case study (Post et al. 1997). Include the existing situation as it is the main yardstick 
for comparison for most people. 

• Focus on the added value of what you are doing. Always ask yourself the question: 
What difference would it make if we did this and this? Prioritize the things that give 
the most value with the least effort. Be on the lookout for small but visible results. 

• Keep it simple. Organization and task analysis is a vast area. The CommonKADS steps 
and methods give a good framework, but you should not do everything. Pick out the 



♦ S Anil* 

66 Chapter 3 

steps and pieces that are most useful to you in your project. Use the rest of the Com
monKADS methodology as a checklist so that you don't miss important things. This 
selective approach is a cornerstone of CommonKADS project management discussed 
later on in Chapter 15. 

The results of the analysis as described in this chapter provide important inputs to 
other CommonKADS models, namely, the communication model (especially the agent 
information) and the knowledge model (in particular the task structure). In addition, the 
techniques and results of the present analysis can be imported to activities outside the 
knowledge-systems area. We have indicated the integrative links with quality assurance, 
process improvement, and conventional information-systems analysis. In the last case, 
for example, the task model provides a top-level information model (covering information 
object structure, function, and control), as we find it in information engineering and object-
oriented methodologies. 

Finally, the analysis in this chapter is extremely worthwhile in itself. Far beyond 
knowledge systems, it offers many practical insights into knowledge management in gen-
eral, to achieve higher value and leverage from the knowledge in the organization. 

3.8 Bibliographical Notes and Further Reading 

The CommonKADS model for knowledge-oriented organizational analysis was first de-
veloped by de Hoog et al. (1996). A full-blown and instructive case study not discussed in 
this book is provided by Post et al. (1997). The practical and useful worksheet techniques 
we present in this book are based directly on the further developments by the knowledge 
management unit of Unilever. 

The CommonKADS approach intentionally combines and integrates ideas coming 
from various areas in organizational analysis and business administration. It has, for ex-
ample, been influenced by soft systems methodology (Checkland and Scholes 1990), espe-
cially in its thinking on how to come to a clear and agreed picture of what the real problems 
and opportunities in an organization are. In this regard, it is also useful to consult litera-
ture on organizational learning, such as Argyris (1993). A good reader on many aspects 
of organizational strategy is Mintzberg & Quinn (1992). A standard text on organizational 
culture is Schein (1992). Interesting reading for knowledge engineers and managers is 
Scott-Morgan (1994), showing that not only is knowledge often tacit, but also that there 
are many social rules for decision-making and management within organizations. 

CommonKADS aims to integrate organization process analysis and information anal-
ysis. In many knowledge projects they are very hard to separate anyway. Practical ap-
proaches to business process modelling and reengineering are proposed, e.g., in Johansson 
et al. (1993) and Watson (1994). The latter makes a clear link between thinking on business 
process reengineering and improvement, and total quality management which is reviewed 
concisely in Peratec (1994). Currently, most information systems methodologies are very 
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limited in their consideration of wider organizational feasibility and benefits aspects. This 
still even holds for the very recent object-oriented approaches (Eriksson and Penker 1998). 
One of the very few exceptions is James Martin's Information Engineering approach 
(Martin 1990). 

In job, task, and workplace analysis, there is, of course, also much existing work rel-
evant to knowledge engineering and management, from the areas of organizational be-
havior (Harrison 1994), human resource management (Fletcher 1997), and ergonomics 
(Kirwan and Ainsworth 1992). Ideas and techniques from these areas you will find re-
flected in the CommonKADS task and agent modelling. All in all, CommonKADS con-
tains a state-of-the-art organization and workplace analysis method, with a special empha-
sis on the knowledge aspects and on its integration with modem information modelling. 
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4 
Knowledge Management 

Key points of this chapter: 

• How knowledge management and knowledge engineering can be seamlessly 
linked by using parts of the CommonKADS model suite. 

• Some do's and don'ts for carrying out the three main knowledge manage-
ment activities. 

• What knowledge engineering can contribute to knowledge management, 
and vice versa. 

4.1 Introduction 

Organization and task analysis are knowledge-engineering activities that directly hook up 
with business administration and managerial aspects. A recent field that has emerged in 
business administration is knowledge management. It takes knowledge as a central subject 
for organizational decision-making in its own right, and attempts to deal with the manage-
ment control issues regarding leveraging knowledge. In this chapter, we give a brief sketch 
of some central concepts in knowledge management and indicate how they are related to 
features of the CommonKADS methodology. To understand the basics is important for 
knowledge engineers and system builders, because knowledge engineering and knowledge 
management touch or even overlap each other at several points. 

4.2 Explicit and Tacit Knowledge 

In the area of knowledge management, it has been pointed out — based upon old work in 
philosophy, by the way — that a large part of knowledge is not explicit but tacit. That is, 
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Figure 4.1 
Nonaka's model of the dynamics of knowledge creation, built upon the distinction between explicit and tacit 
knowledge. 

knowledge is often not explicitly describable by the people who possess it, nor is it easy 
to explain and to formalize in books or manuals. Instead, it is a "background" capability, 
partly unconscious and stemming from experience, that is used in problem-solving and 
other human tasks. Knowledge is knowledge in action. As Hugh Cottam, a researcher in 
knowledge acquisition, phrased it: "You may know more than you think!" 

In their book The Knowledge-Creating Company, Nonaka and Takeuchi (1995) have 
built a whole theory about knowledge and its creation, on the basis of this distinction 
between tacit and explicit knowledge. As shown in Figure 4.1, four modes of knowledge 
production are identified: 

1. from tacit to tacit knowledge (= socialization): we can teach each other by showing 
rather than speaking about the subject matter; 

2. from tacit to explicit knowledge (= externalization): knowledge-intensive practices are 
clarified by putting them down on paper, formulate them in formal procedures, and the 
like; 
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Figure 4.2 
Activities in knowledge management and the associated knowledge-value chain. 

3. from explicit to explicit knowledge (= combination): creating knowledge through the 
integration of different pieces of explicit knowledge; 

4. from explicit to tacit knowledge = internalization: performing a task frequently leads 
to a personal state where we can carry out a task successfully without thinking about 
it. 

According to these authors, organizational knowledge creation continuously needs all 
four types of knowledge production. The aim of knowledge management is to properly 
facilitate and stimulate these knowledge processes, so that an upward, dynamic spiral of 
knowledge emerges. In such a view, knowledge engineering as discussed in this book is 
a methodology especially useful in "externalization," that is, converting tacit into explicit 
knowledge. This is a unique feature of knowledge engineering, because there is hardly 
any other mature scientific methodology capable of externalizing tacit knowledge. Also, 
the combination of knowledge is well supported in knowledge engineering, e.g., through 
libraries of reusable task and domain models. The importance of tacit knowledge is nowa-
days widely acknowledged in knowledge engineering and management. 

4.3 The Knowledge Management Cycle 

Today, there are many frameworks for knowledge management around. They all have in 
common their intention to cover the complete life cycle of knowledge within the organiza-
tion. Typically, the following activities with respect to knowledge and its management are 
distinguished by many authors (see Figure 4.2). 

• Identify internally and externally existing knowledge. 
• Plan what knowledge will be needed in the future. 
• Acquire and/or develop the needed knowledge. 
• Distribute the knowledge to where it is needed. 
• Foster the application of knowledge in the business processes of the organization. 
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• Control the quality of knowledge and maintain it. 
• Dispose of knowledge when it is no longer needed. 

Thus, a simple, but very practical definition of knowledge management is: a frame-
work and tool set for improving the organization's knowledge infrastructure, aimed at 
getting the right knowledge to the right people in the right form at the right time. Al-
though this book is not on knowledge management per se, the CommonKADS knowledge 
engineering methodology does offer a number of practical instruments in this direction, 
particularly the techniques for knowledge-oriented organization and task analysis, and the 
methods to enhance knowledge sharing and reuse. 

Obviously, knowledge management is not a one-shot activity. Authors see knowledge 
management as embedded in a cyclic model of the learning organization. This is based, 
for example, on Argyris' model of "double-loop" organizational learning — the first loop 
is direct learning about an application, product, or activity; the second loop runs on top 
of that and is learning about knowledge and learning itself — whereby the mission, goals, 
and strategy of the organization act as the driving force. Knowledge management helps the 
organization to obtain feedback and continuously learn from its own experiences, on the 
basis of which it improves its knowledge infrastructure for the future. 

Accordingly, the listed knowledge-process activities form the elements of a coherent 
whole, called the knowledge-value chain, and depicted in Figure 4.2. This is in analogy 
to the famous value chain, proposed by Michael Porter (1985). Here, an organization is 
considered as consisting of a collection of activities jointly aimed at the creation of value, 
which is embodied in products and services that are appreciated by its customers. In this 
value-chain concept, knowledge management is a support activity focusing on facilitating 
and improving the application of organizational knowledge. 

4.4 Knowledge Management Has a Value and Process Focus 

Figure 4.3 sketches the wider context of knowledge and its management within the orga-
nization. As outlined previously, knowledge is a prime enabler to successfully carry out 
the business processes within the organization, which in turn create value for the recipi-
ents of its products and services. The formulation of a knowledge-management strategy 
follows the opposite, outside-in direction. It starts by considering the value-creation goals 
of the organization, and how this value is delivered by the organization's business pro-
cesses. Knowledge assets are those bodies of knowledge that the organization employs 
in its processes to deliver value. The knowledge management question then is what ac-
tions are useful for increasing the leverage of the knowledge underlying these processes. 
Knowledge engineering as discussed in this book is one of the instruments available for 
this purpose. 

A very wide range of managerial actions to enhance the flow and leverage of knowl-
edge are conceivable. Many case studies, such as those done in industries in Japan, show 
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Figure 4.3 
Knowledge management in relation to the business processes and value creation by the organization. 

the importance of creating multifunctional and cross-disciplinary teams to build a richer 
knowledge base for innovative product design. In some cases, knowledge is concentrated 
within special expertise centers in order to achieve a sufficient critical mass, e.g., in emerg-
ing advanced technology areas. 

In other cases, knowledge is spread out, by reallocating specialist knowledge from 
headquarters to small local offices by means of decision support systems: this has been 
done, for example, by banking and insurance companies in Europe, in order to better and 
more quickly serve the local customer with financial services such as loans and mortgages. 
Research organizations rethink and redesign their "knowledge logistics," seeking new ways 
of transferring their knowledge to target groups and taking advantage of the new opportu-
nities for attractive visualization of information on the Internet and its World Wide Web. 
Here, information gathering is supported by intelligent software agents that assist us as a 
kind of knowledge broker. US-based internationally operating enterprises have installed 
knowledge repositories, for example, in the form of a distributed database of projects car-
ried out and lessons learned, in order to strengthen worldwide management consulting. 

Other forms of organizational memory enhancing knowledge sharing exist in libraries 
of reusable model fragments, information, and software components, to facilitate assem-
bly of new information systems (this book devotes a special chapter to this topic), speed up 
engineering design studies, and reduce time to market. Automotive companies have cre-
ated new knowledge feedback loops by organizing special regular meetings with their car 
dealers and customers, the results of which are then used in car redesign. Yet other organi-
zations experiment with network-oriented, so-called virtual organizations speeding up the 
flow of knowledge, for example, in faster creation of new customer services and strength-
ening its competitive position in a deregulating energy utility market. Knowledge systems 
based on top-level specialist expertise act as task assistants at different geographical lo- 
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cations of food-processing plants, to disseminate best practices, and achieve top-quality 
standardization. And so on. 

When we look at this great, perhaps even bewildering, variety, it is clear that there is 
no silver bullet in knowledge management. But although this is a young field, there are 
several clear lessons to be learned from the experience of organizations at the forefront of 
knowledge-based thinking. Here are a number of them. 

• The new truism: Knowledge is a key asset, but it is often tacit and private. The 
knowledge manager's challenge is to deal with the fact that knowledge is an organi-
zational asset, and at the same time mostly resides in individual people. Moreover, in 
contrast to assets like plants and buildings, human knowledge assets are mobile and 
may easily walk away at 5 o'clock (to their home or to the nearest competitor). Knowl-
edge management and engineering actions should therefore not have a mechanistic or 
bureaucratic nature. Instead, they have to be people-oriented. 

• Knowledge is not what you know but it is what you do! The notion of asset can be 
a bit deceiving, as it has a passive "just-sitting-there" connotation like a plant. Instead, 
we repeatedly stress the nature of knowledge as a potential for action. Knowledge can 
realize its value only when it is used. What knowledge is depends on the context of 
use. 

• Creating knowledge pull instead of information push: Knowledge management 
has an outside-in, value, and process focus. The information society and its new 
technological capabilities have a tendency to overload us with information. The in-
formation society may well begin to develop the signs of a new disease: information 
infarction. Knowledge management needs to counteract this danger by introducing 
selectivity and enhancing focus, a point already discussed (cf. Figure 4.3). Basic com-
munication of information is not sufficient, and may even lead to overload, if it is not 
supplemented with goal-oriented sharing of experience and expertise. Knowledge man-
agement often has a bottom-up orientation in order to become practically successful, 
creating and sustaining pull derived from ongoing application project needs. 

• Knowledge transfer is not just handing over something: There is no such thing 
as a knowledge-burger. Knowledge has traditionally been viewed as an attribute of 
competent people, rather than as an entity in itself. The latter view (that we also adhere 
to in this book) is quite recent, linked as it is to reflections about the impact of the 
Information Age. It is a step forward, but the knowledge-as-a-substance view also has 
its limitations and dangers. Knowledge is not like a hamburger you can just produce 
at one place and hand over at another. Many failed knowledge and technology transfer 
projects are witness to the fact that you cannot treat knowledge as a thing you throw 
over the wall. 

• The knowledge exchange mechanism: Knowledge sharing = communication + 
knowledge recreation. Much more appropriate than a simplistic transport or sender-
receiver view on knowledge transfer, is the idea of knowledge sharing. Transfer is bet- 
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ter thought of in terms of coproduction or comakership of knowledge. This is reason to 
stress the importance of multifunctional and multidisciplinary teamwork in knowledge-
intensive organizations. Similar experiences are reported by so-called virtual organi-
zations, where different companies at different locations form a network to achieve a 
joint goal. In knowledge engineering, experience has led to discarding the old idea that 
knowledge can be "mined" as jewels out of the expert's head. Rather, knowledge en-
gineering is a constructive and collaborative activity in which modelling of knowledge 
is central. 

• Knowledge management is about facilitating knowledge sharing by people. It is 
about increasing their connectivity. This is what you will hear many experienced 
knowledge managers say. Simple bottom-up measures will often do the job. Most see 
knowledge management as a lightweight activity that balances soft and hard aspects. 
It has a facilitatory role, helping to create knowledge pull, instead of installing rigid 
structures ultimately giving rise to information overload. 

Although this only sketches a high-level picture, it does give the general flavor of what 
knowledge management is. 

4.5 Knowledge Management with CommonKADS 

As has been said in the introduction and elsewhere, knowledge management can be seam-
lessly linked to knowledge engineering. Substantial parts of the CommonKADS models 
will be instantiated as a result of knowledge-management actions, thus reducing the need 
to develop them again in a knowledge-intensive system project. This also works the other 
way: in a knowledge-system project, building CommonKADS models will produce infor-
mation that can be useful for knowledge-management purposes. The goal of this section is 
to elaborate on this link. 

4.5.1 Basic Approach 

Our basic approach to knowledge management is visualized in Figure 4.4. It distinguishes 
a management level and a knowledge object level. This is very similar to the distinction 
made between management-level activities and development work in knowledge projects 
(see Chapter 15). 

The upper part, the knowledge-management level, comprises management tasks. 
When we see knowledge as a resource, then this level has to manage this resource, just 
as any other resource. Basically, this means that the resource has to be made available: 

• at the right time; 
• at the right place; 
• in the right shape; 
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Figure 4.4 
Knowledge management, like other management tasks, can be seen as a metalevel activity that acts on an object 
level. 

• with the needed quality; 
• against the lowest possible costs. 

Knowledge as a resource has certain properties which make this management task 
rather different from managing physical, tangible resources (see Wiig et al. (1997b) for 
an enumeration of these properties). This justifies the existence of a separate discipline 
of knowledge management and knowledge engineering. Knowledge management initiates 
and executes knowledge-management actions which operate on the knowledge object level, 
consisting of knowledge assets, organizational roles, and business processes. It monitors 
the achievements through reports and observations. 

To make knowledge management a viable enterprise, more flesh must be added to the 
skeletal model in Figure 4.4. This means describing a process model for the management 
level and an "object model" for the object level. Note that this is very similar to what 
CommonKADS does for knowledge engineering. The project management approach in 
Chapter 15 is the specification of the management level, while the models elaborated in 
Chapters 3, 5, 9, and 11 specify the project work level. For specifying the object level in 
knowledge management, large parts of the CommonKADS model suite can be reused. 

Let us first present a model for the knowledge-management level. As depicted in 
Figure 4.5, knowledge management is a cyclic process, consisting of three different type 
of management activities: conceptualize, reflect, and act. Note that this is different from 
the model of Figure 4.2, not only in the activities it contains but also in its cyclic nature. 
We discuss the three main activities in some detail later on. 
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Figure 4.5 
Knowledge management consists of a cyclic execution of three main activities: conceptualize, reflect, and act. 

The knowledge object level is defined in Figure 4.6. The three main components mak-
ing up the knowledge object level — agents, business processes, and knowledge assets —
are shown. The knowledge-management actions indicated in Figure 4.4 will effect changes 
in one or more of these components: in practice most actions will affect all three. These 
actions will aim at improvements in one or more of the quality criteria for resources men-
tioned above. If we take the housing application, which will be elaborated in Chapter 10, 
we can see the building of that knowledge system as a knowledge-management action 
which will increase, for example, the quality of the knowledge and its availability in terms 
of time and place. The system will change the agents (some assets move from people to 
software, new agents are introduced), the business process (the way requests are handled), 
and features (form, nature) of the knowledge asset (housing allocation knowledge). 

A closer look at this simple housing example shows that the components affected by 
the knowledge-management actions (the object level) to a large extent coincide with what 
is modelled by the CommonKADS models addressing the context of a knowledge sys-
tem. This is indicated in Figure 4.6 by the notes attached to agents, business process, and 
knowledge assets. They refer precisely to those elements from the CommonKADS model 
suite which can be linked to knowledge management. The organization model will show 
the resulting change in people and (possibly) structure; the agent model will deal with new 
agents; the organization model and task model will reflect the change in the process and 
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Figure 4.6 
Knowledge-management actions are defined in terms of three objects: agents that possess knowledge assets and 
participate in the business process. The notes indicate which parts of the CommonKADS models describe these 
objects. 

the resolved knowledge bottlenecks. The housing application does not lead to a new fine-
grained knowledge specification, but in many cases this will happen. This in turn can be 
part of Nonaka's model of model creation: the move from tacit to explicit knowledge (see 
Figure 4.1). This implies, in our terminology, that the knowledge has changed its form. 

What has been said here emphasizes the seamless linking of knowledge management 
and knowledge engineering. However, it should be kept in mind that, although linked, they 
are still essentially different because they are attached to organizational roles with a dif-
ferent scope, purview, and discretion. Confusing knowledge management and knowledge 
engineering is not a good idea. Building knowledge systems (whether based on explicit 
knowledge representation or on machine-learning techniques) is not to be portrayed as 
coinciding with knowledge management. 
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Knowledge systems should be viewed as tools for knowledge management. They of-
fer potential solutions to knowledge resource problems detected, analyzed, and prioritized 
by knowledge management. The resulting action, building a knowledge system, is "dele-
gated" to knowledge engineering. This is visualized in Figure 2.6 where there is a clear 
distinction between the "knowledge manager" and the "project manager." If you wonder 
in Chapter 15 where the management reports from the project manager will be sent to, than 
the answer is the knowledge manager. These are the reports shown in Figure 4.4. 

However, a strong point of the CommonKADS methodology is that the models indi-
cated in Figure 4.6 can be shared between the knowledge manager and the project man-
ager, and in a wider sense between all agents shown in Figure 2.6. In this way they create a 
common ground, thus counteracting one of the most destructive tendencies in any human 
endeavor, not understanding what the other means. In addition it reduces redoing work: 
filling parts of models can be done either from the knowledge-management side or from 
the knowledge-engineering side. But as both sides need them for their work, there is no 
need to redo filling parts of models, when it has already been done by the other side. 

Thus, the main link between knowledge management and knowledge engineering is 
found at the knowledge object level. For the management level the similarities are far less, 
which is to be expected, since managing knowledge is definitely not the same as managing 
a knowledge-system development project. 

The main model for the management-level activities in knowledge management is the 
cycle depicted in Figure 4.5. Below we briefly discuss the three main activities in this 
cycle. 

4.5.2 Conceptualize 

The main goals of the conceptualize activity are to get a view on the knowledge in the 
organization and its strong and weak points. The first goal will be served by filling the 
knowledge object level, while the second can be supported by bottleneck analysis based 
on a closer inspection of the properties of the knowledge assets involved. In carrying out 
this activity most of the guidelines from Chapter 3 can be applied. However, from the 
knowledge-management perspective a few must be added. 

Guideline 4-1:  FIND A PROPER SCOPE FOR THE CONCEPTUALIZATION 
Rationale: As knowledge management is far less constrained than building knowledge-
systems, there is a danger that without a good scoping the activity will go on without clear 
purpose or end, because only rarely can "everything" be described. Good starting points for 
scoping are initial bottlenecks, new business opportunities, and human resource problems. 

Guideline 4-2:  CHOOSE THE PROPER LEVEL OF DETAIL 
Rationale: For knowledge-management purposes it is almost never necessary to go into 
too much detail. This holds in particular for analyzing the knowledge. Generally speaking 
the coarse-grained level in worksheet TM-2 will be sufficient 
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Guideline 4-3:  BE AWARE OF "HIDDEN" KNOWLEDGE 
Rationale: There is not a straightforward relation between the visibility of knowledge and 
its importance. This holds especially for "informal" knowledge that everybody takes for 
granted. 

Guideline 4-4:  NEVER RELY ON A SINGLE SOURCE WHEN TRYING TO LINK KNOWL-
EDGE TO AGENTS 
Rationale: People don't know always what other people know. A simple technique for 
dealing with this issue is network analysis: asking people where they turn to when they 
have a problem they can't solve. 

Guideline 4-5:  BEAUTY IS IN THE EYE OF THE BEHOLDER 
Rationale: When analyzing strong and weak points there is not a single universally valid 
point of view to take. Alternate between different viewpoints; this will certainly bring new 
insights. 

Guideline 4-6:  SOME QUANTIFICATION IS BETTER THAN NO QUANTIFICATION AT 
ALL 
Rationale: Though quantification of the value of knowledge is notoriously hard, put some 
effort into obtaining statements that go beyond gut feeling. Even with simple procedures 
one can achieve better insights into this area. As a minimum, require and deliver justifica-
tions for opinions of the type, "This knowledge is indispensable to the organization." 

4.5.3 Reflect 

The activity of conceptualization will produce a set of bottlenecks, problems, opportuni-
ties, weaknesses, and so on, for which improvements must be identified. When not every-
thing can be realized at the same time, priorities must be set. After the choice has been 
made, improvement plans should be devised. At this point, knowledge management starts 
to diverge from knowledge engineering. This is stressed in some of the guidelines below. 

Guideline 4-7:  TAKE A MAXIMUM DISTANCE FROM METHODOLOGIES SUCH AS 
CommONKADS 
Rationale: This sounds strange, but it serves to prevent a bias toward knowledge-system 
solutions that may be associated with using elements of the CommonKADS methodology 
during the conceptualize activity. 

Guideline 4-8:  AVOID THE TRAPDOORS OF "SOLVING THE WRONG PROBLEM" AND 
"SELECTING THE WRONG SOLUTION" 
Rationale: For some reason there is a tendency to associate knowledge management with 
information technology, and this pernicious misconception spawns a bias toward solutions 
relying entirely on information technology. Take a look from the other side; a simpler, 
more effective, and cheaper solution might be there. 

• r.4  S. '13  SS • 
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Guideline 4-9:  THERE ARE NO SILVER BULLETS 

Rationale: Again, almost a truism, but the necessary companion of the previous one. Life, 
and in particular organizations and knowledge, are too complex to believe that one single 
measure will lead you into paradise. Don't believe it when someone tells you that your 
knowledge-sharing and -exchange problems can be solved by installing program XYZ on 
your network. It probably will generate more problems than it solves. 

Guideline 4-10:  ABIDE BY MURPHY'S LAW 

Rationale: The juiciest fruits are hardest to grasp. Only rarely will your improvements 
also be the ones that are easiest to implement. When planning your improvements be very 
aware of risks. There may be reasons to reject the preferred improvements because the 
risks are too high. Keep a keen eye on unexpected side effects. 

Guideline 4-11:  SLEEP ON IT 

Rationale: There is a wealth of psychological literature on the mistakes people can make 
when judging and deciding. It is good practice to review your reflect process on the unde-
tected occurrence of these biases. 

4.5.4 Act 

Acting in the framework presented here means initiating the agreed- upon improvement 
plans and monitoring their progress. As knowledge management is tangential to many 
other management concerns in an organization, one should be very conscious of the bound-
aries of discretion involved. Knowledge management carries the seeds of becoming every-
thing, which of course in the end will reduce it to nothing. Bordering disciplines are human 
resource management, knowledge engineering, information technology, and organizational 
consultancy, to name a few. 

A simple example can clarify where boundaries can be set. From a knowledge-
management perspective it may have been decided that in order to solve a knowledge 
problem or grasp a knowledge opportunity, some of the personnel have to be trained in a 
new knowledge area. In our view, organizing this training program (finding training staff, 
scheduling courses, allocating personnel) is the job of the human resources department (or 
if there is no such department, the person playing the role of human resources manager), 
whereas monitoring the progress of the courses and the effects on the knowledge in the 
organization belongs to the "act"ivity. In the same vein, the relation with knowledge engi-
neering can be described; see again the differentiation in roles as shown in Figure 2.6. For 
the "act" part of the knowledge-management cycle some guidelines can be formulated. 

Guideline 4-12:  Go FOR MEASURABLE OBJECTIVES 
Rationale: The intangible nature of knowledge makes it easy to talk in vague terms about 
results. However, proper monitoring can only be done when there are clear yardsticks 
against which progress can be measured. 
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Guideline 4-13:  THINGS DO NOT RUN THEMSELVES 
Rationale: Assign clear responsibilities and give clear briefs. Carry out control on 
progress quite frequently. It is a mistake to believe that all is said and done, after an 
action has been initiated. 

4.6 Knowledge Management and Knowledge Engineering 

Knowledge engineering and knowledge-systems have to be viewed and embedded in this 
perspective: knowledge engineering as a methodology to be used as one of the instruments, 
and knowledge systems as one of the important products to be used in knowledge manage-
ment. Knowledge engineering as discussed in this book offers many useful concepts and 
methods for knowledge management. To name a few: 

• Knowledge-oriented organization analysis helps to quickly map out fruitful areas for 
knowledge-management actions. The methods presented are very suitable for quick 
knowledge scans or audits, or for one-day workshops with responsible managers. 

• Task and agent analysis has shown to be very useful for clarifying knowledge bottle-
necks in specific areas. It is not uncommon that these turn out to be different from the 
accepted wisdom in the organization. Techniques like these are relevant to business 
process redesign and improvement where knowledge work is involved. Because Com
monKADS provides a gradual transition between business and information analysis, 
this is also key to a better integration of information technology into the organization. 

• Knowledge engineering places strong emphasis on the conceptual modelling of 
knowledge-intensive activities. The often graphical techniques have proved to be very 
useful in clarifying the major tacit aspects of knowledge, in a (nontechnical, nonsys-
tems) way enabling and stimulating fruitful communications with a variety of people 
(managers, specialists, end users, customers) who often do not have a background in 
information technology. 

• The accumulated experience of knowledge engineering shows that there are many re-
curring structures and mechanisms in knowledge work. This has, for example, led to 
libraries of task models that are applicable across different domains. This approach of-
fers many useful insights into constructing the reusable information architectures and 
software components that are increasingly needed in modern IT-based organizations. 

Therefore, knowledge engineering has several different applications. The construc-
tion of knowledge systems is only one of them, albeit an important one. CommonKADS 
has also been used in knowledge-management quick scans and workshops, in IT strategy 
scoping and feasibility projects, and it further gives a sound support in the early stages of 
requirements elicitation and specification in systems projects. In all applications of knowl-
edge engineering, the conceptual modelling of knowledge at different levels of detail is a 
central topic. This is the subject to which we now turn. 
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4.7 Bibliographical Notes and Further Reading 

Knowledge management has received enormous attention over the last few years. This has 
led to "guru" books like Stewart (Stewart 1997) Drucker (1993) (see Chapter 1), books and 
articles focusing on guidelines and techniques of which there still only a few (Wiig 1996, 
Sveiby 1997, Edvinsson and Malone 1997, Wiig et al. 1997a, Tissen et al. 1998), books 
and articles with case studies (too many to mention), and "old wine in new bottles" publi-
cations (see, for example, conference proceedings of PAKM '96 (Wolf and Reimer 1996). 

The basic approach in this chapter is taken from van der Spek and de Hoog (1994) (see 
also Wiig et al. (1997b), which was inspired by notions borrowed from CommonKADS). 
Some of the first theoretical notions can be found in van der Spek and Spijkervet (1994) and 
van der Spek and de Hoog (1994). The first explicit link between knowledge management 
and CommonKADS can be found in Benus and de Hoog (1994). 

The theory of organizational knowledge processes, built upon the distinction between 
tacit and explicit knowledge, is discussed extensively in Nonaka and Takeuchi (1995), 
which also contains several interesting case studies on knowledge creation in industrial 
innovation processes. Some books out of the wave of recent general writings on knowledge 
management from the perspective of business administration are Davenport and Prusak 
(1998) and Tissen et al. (1998); see also the reading notes to Chapter 1. Many works 
emphasize the value orientation that knowledge management should have. The concept 
of the business-value chain was developed by Porter (1985). The knowledge-value chain 
as sketched in this chapter was taken from Weggeman (1996). That study is part of a 
collection containing a wide range of views from different fields concerning knowledge 
management, including information technology aspects. For a discussion of the relation 
between knowledge engineering and knowledge management, see Wielinga et al. (1997). 
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Knowledge Model Components 

Key points of this chapter: 

• Knowledge is a complex form of information. 
• Analyzing and modelling knowledge requires specialized tools. 
• The CommonKADS knowledge model is such a specialized tool. 
• The knowledge model contains the building blocks for constructing a 

knowledge model: "task," "inference," "domain schema" and "knowledge 
base." 

• A combined graphical-textual representation is provided for describing the 
knowledge model. 

5.1 The Nature of "Knowledge" 

"Knowledge" is a term of which all of us have a good intuitive understanding of what it 
means, but which is hard to define in any formal way. Many people have tried to come up 
with satisfactory definitions, but these seem to be at best good approximations. 

Knowledge is closely related to "information." We would say that the fact that a patient 
has a temperature of 39.0°C is a piece of information, and that physicians have knowledge 
to derive from this fact that the patient has a fever. From a systems-engineering point of 
view, knowledge is probably best seen as a special type of information, namely "informa-
tion about information." Knowledge tells us something about certain information items. 
A simple form of knowledge is incorporated in subclass hierarchies, which have become 
a common tool in data modelling. A subclass link between two classes provides us with 
information about two classes. Knowledge thus typically has an "aboutness" character: it 
tells us about the way to understand some other piece(s) of information. 
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Knowledge can often be used to infer new information. To stay with the previous 
example, a subclass link can be used to inherit information from the superclass to the 
subclass. This generative property of knowledge has been used by some as the feature 
distinguishing between knowledge and information, but in practice this is difficult. For 
example, is a formula for computing the sales tax knowledge? In this book we take the 
(somewhat simplified) position that there is no hard borderline between knowledge and 
information. Knowledge is "just" complex information, typically telling us something 
about other information. 

5.2 Challenges in Representing Knowledge 

Before diving into the detailed issues related to modelling knowledge, let's take a simple 
example. Consider a financial application concerned with providing loans to people. Two 
classes for this domain are shown in Figure 5.1 together with some typical attributes. The 
figure also illustrates the difference between information and knowledge. Information is 
typically that a person X has a loan Y. We would model this information with an infor-
mation type, in this case something like a has-loan relation between person and loan. 
The figure also contains three statements that we intuitively would call knowledge. For 
example, all persons applying for a loan should be at least 18 years old. Note that the defi-
nition of knowledge as "information about information" holds here: the statements tell us 
something about the information stated above. The knowledge fragments tell us something 
about persons and loans in general, and not just about particular person-loan instances. 

If we look a bit closer at the knowledge fragments in Figure 5.1, we can see that there 
are patterns in there. For example, the two "rules" about the relation between the amount 
of the loan and the height of the person's income have the same basic structure. One of 
the challenges for any knowledge-engineering methodology is to find appropriate ways of 
modelling knowledge in a schematic way. We do not just want to list all the possible pieces 
of knowledge, just as we do not list the contents of a database. 

What we do not want is one large flat knowledge base containing all the rules. Instead, 
we are striving for a fine-grained structure in which we divide the knowledge base up into 
small partitions (e.g., rule sets) that share a similar structure (see Figure 5.2). This is a 
requirement for any form of useful knowledge analysis, validation, and maintenance. In 
this chapter we will see how this goal of structuring knowledge can be achieved. 

5.3 The Knowledge Model 

5.3.1 Role of the Knowledge Model 

Detailed requirements engineering is split in CommonKADS into two parts. The knowl- 
edge model specifies the knowledge and reasoning requirements of the prospective system; 
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person loan 
has loan 

age amount 
income interest 

I NFORMATION 

John has a loan of $1,750 
Harry has a loan of $2,500 

KNOWLEDGE 

A person with a loan should be at least 18 years old 
A person with an income up to $10,000 can get a maximum loan of $2,000 
A person with an income between $10,000 and $20,000 can get a maximum loan of $3,000 

Figure 5.1 
Two object classes in the loan domain with some corresponding information and knowledge items. 

Figure 5.2 
CommonKADS moves away from the idea of one large knowledge base. Instead, the purpose is to identify parts 
of the knowledge base in which the knowledge fragments (e.g., rules) share a similar structure. 
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task selected in feasibility study 
and further detailed in 

Task and Agent Models 

communication 
model 

requirements 
specification 

for interaction functions 

knowledge 
model 

requirements 
specification 

for reasoning functions 

Figure 5.3 
Schematic view of the role of the knowledge model in relation to the other models. 

the communication model specifies the needs and desires with respect to the interfaces with 
other agents: i.e., a user interface or an interface with some software system. Together, the 
knowledge model and the communication model form the input for system design and 
implementation. Input for the knowledge-modelling process is a certain task identified in 
the organization model (see worksheet OM-3) and further detailed in the task model (see 
worksheets TM-1 and TM-2) and the agent model. We assume that the task selected is 
characterized as being knowledge intensive, and that formalization of the task and its re-
lated knowledge is considered a feasible enterprise from both a technical, economical and 
project perspective. Figure 5.3 gives a schematic view on the role of the knowledge model 
in relation to the other models. 

The knowledge model itself is a tool that helps us clarifying the structure of a 
knowledge-intensive information-processing task. The knowledge model of an application 
provides a specification of the data and knowledge structures required for the application. 
The model is developed as part of the analysis process. It is therefore phrased in the vo-
cabulary of the application, meaning both the domain (e.g., cars, houses, ships) and the 
reasoning task (e.g., assessment, configuration, diagnosis). The knowledge model does not 
contain any implementation-specific terms. These are left for the design phase. It is seen as 
essential that during analysis implementation-specific considerations are left out as much 
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as possible. For example, when we talk during analysis about "rules," we mean the rules 
that the human experts talk about. Whether these natural rules are actually represented in 
the final system through a "rule" formalism, is purely a design issue, and not considered 
relevant during analysis. This clear separation frees the analyst from all worries concerning 
implementation-specific decisions. This requires, of course, that the analyst has a means 
of knowing that the knowledge models she writes down are "designable." This issue is 
addressed in more detail in Chapter 11. 

The knowledge model has a structure that is in essence similar to traditional analysis 
models in software engineering. The reasoning task is described through a hierarchical de-
composition of functions or "processes." The data and knowledge types that the functions 
operate on are described through a schema that resembles a data model or object model. 
The notations are, on purpose, similar to the ones found in other contemporary methods. 
There are, of course, a number of crucial differences. At the end of this chapter we include 
a special section discussing in detail the differences between the CommonKADS knowl-
edge model and analysis models in general software engineering. Experienced software 
engineers might first want to read that section before moving on. 

5.3.2 Knowledge Model Overview 

A knowledge model has three parts, each capturing a related group of knowledge struc-
tures. We call each part a knowledge category. 

The first category is called the domain knowledge. This category specifies the domain-
specific knowledge and information types that we want to talk about in an application. For 
example, the domain knowledge of an application concerning medical diagnosis would 
contain definitions of relevant diseases, symptoms, and tests, as well as relationships be-
tween these types. A domain knowledge description is somewhat comparable to a "data 
model" or "object model" in software engineering. 

The second part of the knowledge model contains the inference knowledge. The infer-
ence knowledge describes the basic inference steps that we want to make using the domain 
knowledge. Inferences are best seen as the building blocks of the reasoning machine. In 
software engineering terms the inferences represent the lowest level of functional decom-
position. Two sample inferences in a medical diagnosis application could be a "hypothe-
size" inference that associates symptoms with a possible disease, and a "verify" inference 
that identifies tests that can be used to ascertain that a certain disease is indeed the factor 
that causes the observed symptoms. 

The third category of knowledge is the task knowledge. Task knowledge describes 
what goal(s) an application pursues, and how these goals can be realized through a decom-
position into subtasks and (ultimately) inferences. This "how" aspect includes a description 
of the dynamic behavior of tasks, i.e., their internal control. For example, a simple medical 
diagnosis application could have DIAGNOSIS as its top-level task, and define that it can 
be realized through a repeated sequence of invocations of the "hypothesize" and "verify" 
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Inference knowledge 
basic inferences 
roles 

Domain knowledge 
domain types 
domain rules 
domain facts 

Task knowledge 

task goals 
task decomposition 
task control 

Symptom isease..4_,.. Test 
(type) (type) (type) 

hypothesize 
(inference) 

DIAGNOSIS 
(task) 

verify 
(inference) 

Figure 5.4 
Overview of knowledge categories in the knowledge model. At the right some examples are shown of knowledge 
elements in a medical diagnosis domain. 

inferences. Task knowledge is similar to the higher levels of functional decomposition in 
software engineering, but also includes control over the functions involved. 

Figure 5.4 gives a brief overview of the three knowledge categories, as well as some 
sample knowledge elements in each category. In the following sections, we discuss each 
of the three categories in more detail. 

5.3.3 Knowledge-Model Notations 

As we will see in the next section, we model domain knowledge with a notation similar 
to a UML class diagram. A difference is that in knowledge modelling we do not model 
functions (i.e., operations, methods) within information objects. Thus, we will see that the 
notion of "concept" is almost the same as a UML class, but without any operations. This 
difference is due to the special role that functions (i.e., inferences and tasks) have within 
knowledge modelling. The reader is referred to the final section of this chapter for a more 
elaborate discussion of this topic. 

Task and inference knowledge have their own special graphical notations, as there is 
no direct UML equivalent. You will also note that the graphical notation is based on an 
underlying textual notation. We introduce this textual notation at some places (in particular 
for task knowledge) in a loose, informal manner. Where possible, we limit the knowledge- 
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model notations to the diagrams. Details of the language can be found in the appendix. 
Additional detail and examples of knowledge models are available on the CommonKADS 
website, together with language support tools. 

5.4 Domain Knowledge 

The domain knowledge describes the main static information and knowledge objects in an 
application domain. A domain-knowledge description typically consists of two types of 
ingredients: namely one or more domain schemers and one or more knowledge bases: 

Domain schema A domain schema is a schematic description of the domain-specific 
knowledge and information through a number of type definitions. The schema describes 
the static information/knowledge structure of the application domain. As we will see in 
Chapter 13, it may also contain generalizations of the domain structures in several direc-
tions. From a general software-engineering point of view the domain schema resembles a 
data model or object model. 

Knowledge base A knowledge base contains instances of the types specified in a do-
main schema. A major difference between a knowledge system and, for example, a 
database application is that in database applications, one is, during analysis, seldom in-
terested in the actual facts that have to be placed in the database. In a knowledge system, a 
knowledge base typically contains certain pieces of knowledge such as rules, which are of 
interest (although also to a limited extent, as we will see later on). In knowledge modelling 
we typically distinguish multiple knowledge bases containing different types of knowledge 
(e.g., instances of different rule types). 

In the remainder of this section we show how one can specify a domain schema and 
a knowledge base. As illustrations we use examples derived from a simple application 
concerning the diagnosis of problems with a car. Figure 5.5 shows in an intuitive fashion 
some pieces of knowledge that are found in in this domain. 

5.4.1 Domain-Schema Specification 

The knowledge model provides a set of modelling constructs to specify a domain schema 
of an application. Most constructs are similar to the ones encountered in modern 0-0 data 
models. In particular we follow as much as possible the notations provided by the UML 
class diagram. A synopsis of the class-diagram notation can be found in Section 14.4. As 
the UML description is written as a self-contained section, there is some overlap with the 
descriptions in this chapter. 

In addition to the class diagram, constructs are included to cover modelling aspects 
that are specific to knowledge-intensive systems. In practice, the three main modelling 
constructs are CONCEPT, RELATION, and RULE TYPE. In addition, several other constructs 
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Figure 5.5 
Knowledge pieces in the car-diagnosis domain. 

are available such as SUPERTYPE-OF/SUBTYPE-OF and AGGREGATE/PART. A basic set of 
constructs is introduced in this chapter. Chapter 13 describes some more advanced mod-
elling constructs. 

Concept A CONCEPT describes a set of objects or instances which occur in the appli-
cation domain and which share similar characteristics. The notion of concept is similar 
to what is called "class" or "object class" in other approaches. A difference with object-
oriented approaches is that we do not include functions (i.e., operations, methods) in the 
concept descriptions. Examples of concepts in the car domain could be a gas tank and a 
battery. Concepts can be both concrete things in the world, like the examples above, or 
abstract entities such as a car design. 

Characteristics of concepts can be described in various ways. The simplest way is 
to define an ATTRIBUTE of a concept. An attribute can hold a VALUE: a piece of infor-
mation that instances of the concept can hold. These pieces of information should be 
atomic, meaning that they are represented as simple values. Thus, a concept cannot have 
an attribute containing an instance of another concept as its value. Such things have to 
described using other constructs (typically relations; see further). 

For each attribute, a VALUE TYPE needs to be defined, specifying the allowable values 
for the attribute. Standard value types are provided such as boolean, number (real, integer, 
natural), number ranges, and text strings, as well as the possibility to define sets of symbols 
(e.g., "normal" and "abnormal"). The value type UNIVERSAL allows any value. In the 
appendix a full listing of standard value types can be found. By default, attributes have 
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gas dial 

  

fuel tank 

 

value: dial-value 

  

status: {full, 
almost-empty, 
empty} 

 

    

CONCEPT gas dial; 
ATTRIBUTES: 

value: dial-value; 
END CONCEPT gas-dial; 

VALUE-TYPE dial-value; 
VALUE-LIST: {zero, low, normal}; 
TYPE: ORDINAL; 

END VALUE-TYPE dial-value; 

 

CONCEPT fuel-tank; 
ATTRIBUTES 

status: {full, almost-empty, empty}; 
END CONCEPT fuel-tank; 

Figure 5.6 
Graphical and textual specification of concepts and their attributes and corresponding value types. A concept is 
graphically represented as a box consisting of two parts. The concept name is written in the upper half. Attributes 
are listed in the lower half, together with the names of their value-types. The textual specification is an explicit 
value-type definition. 

a cardinality of 0-1, meaning that for each instance an attribute can optionally store one 
value. Other types of cardinality have to be defined explicitly. 

Two sample concept definitions with attributes are given in Figure 5.6. As can be 
seen in this figure, we use both textual and graphical representations for knowledge-model 
components. The textual representation is the "baseline," and may contain details that are 
not easy (or not necessary) to represent graphically. 

Graphically, concepts are shown as a box consisting of two parts. The concept name 
is written in bold face in the upper half. Attributes are listed in the lower half, together 
with the names of their value types. The textual specification shows that the type for the 
attribute value of gas-dial is defined explicitly as a separate VALUE TYPE. This is typically 
useful if one expects more than one concept attribute to use this value type. If concepts 
occur at more than one place in diagrams, the attribute compartment can be omitted the 
second time. 

Figure 5.7 shows some other concepts, in this case connected to an apple-classification 
problem. In the right-hand part of this figure a number of instances of apple-class are 
shown. For instances the UML notation for objects is used: the name of the instance plus 
the name of the concept it belongs to are written in bold and underlined. 

Concepts are usually the starting point for domain modelling. One important reason 
for defining something as a separate concept and not as an attribute of another concept is 
that it deserves to have its own "existence" independent of other concepts. Identification 
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apple class 

Golden Delicious: 
apple class 

Present of England: 
apple class  

Figure 5.7 
The concepts "apple" and "apple-class." In the right-hand part of this figure a number of instances of apple-class 
are shown. For instances the UML notation for objects is used: the name of the instance plus the name of the 
concept it belongs to are written in bold and underlined. 

of concepts cannot be done in a neutral way: what is considered a concept depends on 
the context provided by the application domain. This scoping provided by the application 
(both by the domain itself and by the task) enables keeping the domain-modelling process 
"do-able." If this context does not exist, inexperienced knowledge engineers either model 
too much or, alternatively, do not produce anything because they are scared off by the 
complexity that comes with a widely applicable schema. 

Relation Relations between concepts are defined with the RELATION or BINARY RELA-
TION construct. Relations can be used in the standard entity-relationship (E-R) fashion, but 
can also be used for more complicated types of modelling. Relations are defined through 
a specification of ARGUMENTS. For each argument the CARDINALITY (sometimes called 
"multiplicity") can be defined. The default cardinality is 1, meaning that the participation 
in the relation is obligatory. In addition, one can specify a ROLE for an argument, iden-
tifying the role the argument plays in the relation.  Relations can have any number of 
arguments. However, the bulk of relations have precisely two arguments. Therefore, a spe-
cialized construct BINARY RELATION is provided. Relations may also have attributes, just 
like concepts. Such attributes are values that depend on the relation context, and not just 
on one of its arguments. The standard example of such an attribute is the wedding-date of 
the married-to relation between two people. 
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a) car 

b) car 

c) car person 

    

  

ownership 

 

  

purchase date: date; 

 

Figure 5.8 
Three graphical representations of a binary relation for the car example. Part a) shows the simple nondirectional 
representation. The name of the relation is written as a label next to the line connecting the relation arguments. 
The numbers indicate the minimum and maximum cardinality of the relation argument. Part b) shows the same 
relation, but with a directional name. An arrow is included to reflect the directional nature. Part c) shows a more 
complex representation, in which the relation becomes an object in its own right. The relation box is attached by 
a dashed line to the relation line. The relation box may contain attribute definitions. Also, the relation itself may 
be involved as an argument in other relations. 

Binary relations can be shown graphically in a number of ways. The simplest form 
is just to draw a line between two concepts and label it with the name of the relation. An 
example of this is shown in Figure 5.8a. The relation ownership holds between instances 
of car and instances of person. The number close to the concept box indicates the cardi-
nality: a car can be owned by at most one person; a person can own any number of cars. 
If the name of a binary relation is of a directional nature, an arrow may point to indicate 
the direction. This is the case in Figure 5.8b. The relation owned-by has a direction from 
the car to the person who owns it. In the case of directional relation names, there may also 
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be a need to introduce an inverse relation (e.g., owns). Generally speaking, it is best to 
choose as much as possible nondirectional relation names. Nondirectional names empha-
size the static characteristics of a relationship, and are thus the least likely to change when 
the functionality of the application changes. 

If a relation has attributes of its own, or if the relation itself takes part in other re-
lations, this simple relation representation is not sufficient. In that case we omit the text 
label and draw the relation in a fashion similar to concepts: namely as a box with attributes 
connected with a dashed line to the relation line. This graphical representation is shown in 
Figure 5.8c. This particular representation is also called reification of a relation. Mathe-
matically speaking, one treats a relation tuple as a single, complex object. Relation reifi-
cation is a powerful modelling mechanism that can be used in many knowledge-intensive 
domains. The textual description follows quite naturally from the graphical one. An ex-
ample is shown below: 

BINARY-RELATION owned-by; 
INVERSE: owns; 
ARGUMENT-1: car; 

CARDINALITY: 0-1; 
ARGUMENT-2: person; 

CARDINALITY: ANY; 
ATTRIBUTES: 

purchase-date: DATE; 
END BINARY-RELATION owned-by; 

This sample specification captures a relation type that is a mix of Figure 5.8b+c. This 
relation is a binary relation and thus has exactly two arguments. The relation name is di-
rectional (from car to person), and thus the INVERSE slot is used to indicate the inverse 
relation name (owns, from person to car). Note that the implied meaning of the cardinality 
slot of an argument is that it specifies the number of times that one instance of the argument 
may participate in the relation with one particular related object. In the graphical represen-
tation it is common to draw it the other way around: the fact that a car can be owned by 
at most one person is indicated at the "person" side of the relation (see Figure 5.8). The 
sample relation also has an attribute purchase-date. This is necessary because the attribute 
value is dependent on both arguments car and person. 

Relations with three or more arguments are shown with a different notation. The rela-
tion name is placed in a diamond-shaped box, with arguments linked to the diamond. An 
example of a four-place relation is shown in Figure 5.9. In this figure we try to model an 
observation in a medical context. The relation has four arguments: (1) the agent making 
the observation, (2) the patient for which the observation is made, (3) the location in which 
the observation is made (hospital ward, outpatient clinic), and (4) the type of observable 
(e.g., skin color, heart sounds). Again, the relation is represented here as a reified relation. 
This is necessary because the relation itself has three attributes: namely the observed value 
and a time stamp (date plus time). 
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Figure 5.9 
A four-place relation modelling an observation about a patient in a hospital setting. In these multiargument 
relations there should not be a relation argument which completely depends on another argument. 

Analysts usually try to reduce relations with three or more arguments to binary rela-
tions. This can be done if one of the relation arguments fully depends on another relation 
argument. This is not the case in the observation relation: each argument is necessary to 
uniquely identify a relation instance. For example, the same observable could be observed 
at the same location for a certain patient by two different agents (e.g., a doctor and a nurse). 
In this particular example we could even turn it into a five-place relation by introducing 
a time-stamp as an extra concept (replacing the time and date attributes in the relation 
itself). Again, such a decision depends on whether one views a time-stamp as being a 
"first-class" object in its own right in the context of this application (see the discussion 
before on concepts and attributes). 

Reified relations provide powerful forms of abstraction. The resulting concept can 
be treated in a similar way as "normal" concepts. From a formal point of view, reified 
relations are of the form of second-order relations. Reified relations occur in any domain 
with a certain degree of complexity (see, e.g., the application relation in Chapter 10). 

Sub/supertype The knowledge model supports the specification of generaliza-
tion/specialization relations. Concepts can be organized in subtype hierarchies through 
the SUBTYPE-OF construct. The subtype definition is placed inside the definition of the 
subconcept. The examples in Figure 5.10 define two subconcepts of residence. Subcon-
cepts inherit the attributes and relations of the supertype, and may add their own, such as 
the entrance-floor of an apartment. Defining subtypes is not limited to concepts. Rela- 
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CONCEPT house; 
DESCRIPTION: 
"a residence with its own territory"; 

SUB-TYPE-OF: residence; 
ATTRIBUTES: 

square-meters: NATURAL; 
END CONCEPT house; 

CONCEPT apartment; 
DESCRIPTION: 

"part of of a larger estate"; 
SUB-TYPE-OF: residence; 
ATTRIBUTES: 

entrance-floor: NATURAL; 
lift-available: BOOLEAN; 

END CONCEPT apartment; 

Figure 5.10 
Subtype relations are shown graphically through unlabeled lines, with an large open arrowhead pointing to the 
supertype. In the textual description, the subtype specification should be part of the subconcept. 

tions can also have subtypes. For example, a relation ownership of a vehicle could be 
specialized into car-ownership and bicycle-ownership. 

Subtypes are shown graphically through unlabeled lines, with a large open arrowhead 
pointing to the supertype. Figure 5.11 shows subtypes of concepts in the car domain. 
There are two hierarchies, one for car-state and one for car-observable. This distinction 
between observables and states is a distinction made in many diagnostic applications. The 
states are further divided into states that we can notice in some way (and thus can give rise 
to a complaint) and states that are completely internal to the system (invisible-care-state). 
This figure in fact represents information about the nodes in Figure 5.5 plus a number of 
supertypes that give additional meaning to each node. 

Note that for most subtypes in Figure 5.11 no new attributes are added. Instead, the 
value set of an inherited attribute such as status is restricted. Typically, three types of 
specialization can be introduced when creating a subtype: 

1. New feature Add a new attribute or a new participation in a relation. 
2. Type restriction Restrict the value set of an attribute or the types of related concepts. 
3. Cardinality restriction  Restrict the number of attribute values or the number of 

participations in a relation. 

Sometimes it is useful to introduce subtypes even without any specialized features. This 
is done if a term acts as a central concept in an application domain. Such subtypes can be 
seen as "blown-up attributes," because technically speaking they can always be replaced 
by introducing an attribute, where the subtypes appear as possible values. These modelling 
issues are discussed in more detail in Chapter 7. 
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Figure 5.11 
Subtype relations between concepts in the car-diagnosis domain. 

In Chapter 13 we introduce more sophisticated methods for defining sub- and super-
types. In particular, we allow for multiple subtype hierarchies along different dimensions, 
where each dimension represents a different "viewpoint" on a concept. The need for mul-
tiple hierarchies turns up in many real-life applications. 

Rule type So far, the reader may have wondered what the difference is between a domain 
schema and a traditional data model. However, the situation becomes more complex when 
we want to model the directed lines in Figure 5.5. These lines represent dependencies 
between car concepts. If we want to represent these dependencies in a schematic form 
(without listing all the instances), how can we do this? Take two examples of dependencies 
between car states that can be derived from this figure (represented in a simple intuitive 
logical language): 

FUEL-TANK.status = empty => GAS-IN-ENGINE.status = false 
BATTERY.status = low => POWER.status = off 

These dependencies are a sort of natural rules, indicating a logical relationship between 
two logical statements. The logical statements in such rules are typically expressions about 
an attribute value of a concept. These rules are thus a special type of relation. The relation 
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is not (as usual) between concept instances themselves, but between expressions about 
concepts. 

In describing a domain schema for an application there is usually a need to describe 
such rules in a schematic way. For example, we would like to describe the general structure 
of the dependencies in Figure 5.5. The same is true for the knowledge rules in the beginning 
of this chapter in Figure 5.1. To model the structure of such rules we provide a RULE TYPE 
construct. The rule type for modelling the two rules listed above would look like this: 

RULE-TYPE state-dependency; 
ANTECEDENT: invisible-car-state; 

CARDINALITY: 1; 
CONSEQUENT: car-state; 

CARDINALITY: 1; 
CONNECTION-SYMBOL: 

causes; 
END RULE-TYPE state-dependency; 

A rule-type definition looks a bit like a relation, where the ANTECEDENT and the CON-
SEQUENT can be seen seen as arguments. But the arguments are of a different nature. 
Antecedents and consequents of a rule type are not concept instances, but represent ex-
pressions about those instances. For example, the statement that invisible-car-state is 
the antecedent in this rule type means that the antecedent may contain any expression 
about invisible-car-state. Examples of instances of antecedent expressions are fuel-
tank. status = empty and battery. status = low. 

The rule type state-dependency models six of the arrows in Figure 5.5, namely lines 
2-3 and 6-9 (see the numbers in the figure), precisely those between concepts of type car-
state. The other three dependencies do not follow the structure of the state-dependency 
rule type. The dependencies 1, 4, and 5 connect an invisible car state to an expression about 
a car-observable. These rules represent typical manifestations of these internal states. The 
rule type below models this rule structure: 

RULE-TYPE manifestation-rule; 
DESCRIPTION: "Rule stating the relation between an internal state 

and its external behavior in terms of an observable value"; 
ANTECEDENT: 

invisible-car-state; 
CONSEQUENT: 

car-observable; 
CONNECTION-SYMBOL: 

has-manifestation; 
END RULE-TYPE manifestation-rule; 

The rule-type construct enables us to realize the requirement posed earlier in this chap-
ter, namely to structure a knowledge base into smaller partitions (e.g., rule sets) which 
share a similar structure (cf. Figure 5.2). A rule type describes "natural" rules: logical 
connections that experts tell you about in a domain. The rules need not (and usually are 
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not) strictly logical dependencies such as implications. Often, they indicate some heuristic 
relationship between domain expressions. For this reason, we specify for each rule type 
a CONNECTION SYMBOL that can be used to connect the antecedent and the consequent, 
when writing down a rule instance. The examples of dependencies mentioned earlier in 
this section would look like this as instances of the state-dependency rule type: 

fuel-supply.status = blocked 
CAUSES 

gas-in-engine.status = false; 

battery.status = low 
CAUSES 

power.value = off; 

Note that the examples of rule types exploit the subtype hierarchy of Figure 5.11 to 
provide types for the antecedent and the consequent of the causal rules. Figure 5.12 shows 
the graphical representation of a rule type, using the two rule types of the car domain as 
examples. A directed line is drawn from the antecedent(s) to the connection symbol, and 
from the connection symbol to the consequent. The rule-type name is placed in an ellipse 
and connected with a dashed line to the connection symbol. The dashed-line notation is 
used because of the similarity between a rule type and a "relation as class": instances of 
both are complex entities. The numbers connected to the lines indicate the cardinality. The 
cardinality is used to put restrictions on the minimum and maximum number of expres-
sions in the antecedent and/or consequent. In this case the rules must have precisely one 
condition and conclusion. 

In this way we can build a number of rule types for a domain that capture in a schematic 
way knowledge types that we find useful to distinguish. In Figure 5.13 you see a rule type 
for the knowledge rules presented earlier this chapter as a challenge (see Figure 5.1). Below 
the schema itself the actual rules are listed as "instances" of this rule type. For the moment 
we assume an intuitive informal representation of these instances. Later (see Chapter 13) 
we introduce more precise syntax for writing down rule-type instances. 

Please note that the notion of "rule" as we use it here is not connected in any way to 
the implementation-specific rule formalisms. It might be the case that such a formalism 
turns out to be an adequate coding technique, but there is no guarantee nor a need for this 
to be true. The rule types are an analysis vehicle and should capture the structural logical 
dependencies that occur in an application domain, independent of their final representation 
in a software system. 

5.4.2 Knowledge Base 

A domain schema describes domain-knowledge types, such as concepts, relations, and rule 
types. A knowledge base contains instances of those knowledge types. For example, in 
the car-diagnosis domain we could have a knowledge base with instances of the rule types 
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Figure 5.12 
Graphical representation of a rule type. A directed line is drawn from the antecedent(s) to the connection symbol, 
and from the connection symbol to the consequent. The rule-type name is placed in an ellipse and connected by 
a dashed line to the connection symbol. The numbers indicate the cardinality (the minimum/maximum number 
of expressions in the antecedent/consequent). 
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Figure 5.13 
Rule type for loan-assessment knowledge. 
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state-dependency and manifestation-rule. Figure 5.14 shows how we can define such a 
knowledge base. A knowledge-base specification consists of two parts: 

1. The USES slot defines which types of domain-knowledge instances are stored in the 
knowledge base. The format is: 

< type > FROM < domain schema > 

where the latter part defines in which domain schema the type is defined. In the car 
example we have only one schema, but we will see in Chapter 13 that in more complex 
applications there is often a need to introduce multiple domain schemas. 

2. The EXPRESSIONS slot contains the actual instances. The rule instances can be de-
scribed in a semiformal way, where the connection symbol is used to separate the an-
tecedent expression from the consequent. Alternatively, a formal language can be used 
here. It should be noted, however, that knowledge bases may easily change in form 
and extent during analysis, so it is important to avoid excessive formalization of the 
rule instances in cases where the knowledge type has not been verified and validated 
yet. 

Figure 5.14 shows a sample knowledge base, containing the causal model of the car 
application. It uses the two rule types defined in Figure 5.12. The instances in Figure 5.14 
correspond to the knowledge pieces listed in Figure 5.5. 

The fact that a notion like a knowledge base exists is a typical characteristic of knowl-
edge modelling. For a database one would not dream of writing part of the actual data set 
that will be stored in the database during analysis. In knowledge modelling, these instances 
are of interest: they contain the actual knowledge on which the reasoning process is based. 

This does not mean that our knowledge bases have to be completed during analysis. 
Often, the knowledge engineer will be satisfied in the early phases of development with a 
partial set of instances, and complete the knowledge bases once the knowledge model is 
stable enough. 

The separation of "domain schema" and "knowledge base" means that we have to 
reinterpret the term "knowledge acquisition" as consisting of at least two steps: (1) defining 
a knowledge type such as a rule type, and (2) eliciting the instances of this type and putting 
them in a knowledge base. There is often a feedback loop between these two steps, where 
the type definition can be seen as a hypothesis about the format of certain knowledge 
structures in a domain, and the knowledge-elicitation process functions as a verification 
or falsification of this hypothesis by answering the question: can we elicit (a sufficient 
amount of) knowledge of this form? 

The techniques that can be used for knowledge elicitation vary considerably. A wealth 
of techniques exist to support this, ranging from manual methods (e.g., interview tech-
niques) to automated learning techniques. A discussion of this topic can be found in Chap-
ter 8. 
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KNOWLEDGE-BASE car-network; 
USES: 

state-dependency FROM car-diagnosis-schema, 
manifestation-rule FROM car-diagnosis-schema; 

EXPRESSIONS: 
/* state dependencies */ 

fuse.status = blown CAUSES power.status = off; 
battery.status = low CAUSES power.status = off; 
power.status = off CAUSES 

engine-behavior.status = does-not-start; 
fuel-tank.status = empty CAUSES gas-in-engine.status = false; 
gas-in-engine.status = false CAUSES 

engine-behavior.status = does-not-start; 
gas-in-engine.status = false CAUSES 

engine-behavior.status = stops; 

/* manifestation rules */ 

fuse.status = blown HAS-MANIFESTATION 
fuse-inspection.value = broken; 

battery.status = low HAS-MANIFESTATION battery-dial.value = zero; 
fuel-tank.status = empty HAS-MANIFESTATION gas-dial.value = zero; 

END KNOWLEDGE-BASE car-network; 

Figure 5.14 
The knowledge base "car-network" contains instances of the rule types state-dependency and manifestation-rule. 

5.5 Inference Knowledge 

Domain knowledge is described as a static information/knowledge structure of the appli-
cation domain. In the inference knowledge we describe how these static structures can be 
used to carry out a reasoning process. The main ingredients of the inference knowledge 
are the inferences, the knowledge roles, and the transfer functions. 

5.5.1 What Are Inferences? 

The inference knowledge in the knowledge model describes the lowest level of functional 
decomposition. These basic information-processing units are called "inferences" in knowl-
edge modelling. An inference carries out a primitive reasoning step. Typically, an infer-
ence uses knowledge contained in some knowledge base to derive new information from 
its dynamic input. 

Why do we give primitive functions such a special status? A major reason is that 
inferences are indirectly related to the domain knowledge. This feature is realized through 
the notion of a knowledge role, as we will see further on in this section. This indirect 
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coupling of inference and domain knowledge enables us to reuse inference descriptions, as 
we will see at length in Chapter 6. 

In software engineering it is common to request a process specification for every leaf 
function. The nature of the specification is usually left open: either procedural (algorithm, 
pseudocode) or declarative (pre- and post-conditions, invariants). In knowledge engineer-
ing, we take a more rigorous position: 

A leaf function (i.e., an inference) is fully described through a declarative 
specification of its input and output. The internal process of the inference is a 
black box, and is considered not of interest for knowledge modelling. 

This approach provides us with a guideline for deciding when to stop functional 
decomposition, a frequently occurring problem in system analysis. The guideline is in 
essence very simple: be satisfied with the grain size of your set of leaf functions, if and 
only if these inferences provide you with an understandable reasoning trace. This guide-
line builds on a property that many knowledge-intensive systems share: these systems need 
to explain their information-processing behavior in order for the results to be acceptable to 
the user. 

5.5.2 Inferences and Knowledge Roles 

The main feature that distinguishes an inference from a traditional "process" or "function" 
is the way in which the data on which the inference operates are described. Inference I/O 
is described in terms of functional roles: abstract names of data objects that indicate their 
role in the reasoning process. We call such a role a knowledge role. A typical example 
of a knowledge role is "hypothesis": a functional name for a domain object that plays the 
role of a candidate solution. 

We distinguish two types of knowledge roles, namely dynamic roles and static roles. 
Dynamic roles are the run-time inputs and outputs of inferences. Each invocation of the 
inference typically has different instantiations of the dynamic roles. Let's take an example 
inference. Assume we have a cover inference that uses a causal model to find explanations 
that could explain ("cover") a complaint about the behavior of the car. Such an inference 
would have have two dynamic knowledge roles: (1) an input role complaint,  denoting a 
domain object representing a complaint about the behavior of the system, and (2) an output 
role hypothesis,  representing a single candidate solution. 

Static roles, on the other hand, are more or less stable over time. Static roles specify 
the collection of domain knowledge that is used to make the inference. For example, the 
above-mentioned inference cover could use the state-dependency network described in the 
previous section to find candidate solutions. 

Figure 5.15 shows a sample textual specification of the cover inference and its dynamic 
and static roles. The first part of the specification shows how the knowledge roles (both 
the dynamic and static ones) are bound to the domain. Objects of domain type visible- 
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INFERENCE cover; 
ROLES: 

INPUT: complaint; 
OUTPUT: hypothesis; 
STATIC: causal-model; 

SPECIFICATION: 
Each time the inference is invoked, it generates a candidate 
solution that could have caused the complaint. The output 
should be an initial state in the state-dependency network 
which causally 'covers' the input complaint.'; 

END INFERENCE cover; 

KNOWLEDGE-ROLE complaint; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: visible-state; 

END KNOWLEDGE-ROLE complaint; 

KNOWLEDGE-ROLE hypothesis; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: invisible-statE; 

END KNOWLEDGE-ROLE hypothesis; 

KNOWLEDGE-ROLE causal-model; 
TYPE: STATIC; 
DOMAIN-MAPPING: state-dependency FROM car-network; 

END KNOWLEDGE-ROLE causal-model; 

Figure 5.15 
The inference "cover" has two dynamic knowledge roles: the input role "complaint" and the output role "hy-
pothesis." The output is supposed to be a causal explanation of the complaint. The static knowledge role "causal 
model" provides the knowledge needed for making the inference. 

state can play the role of complaint. In our miniexample, this means that only instances of 
engine-behavior can be complaints (see Figure 5.11). The role hypothesis  can be played 
by all invisible-states. The static role causal-model  maps to the state dependencies in the 
knowledge base car-network. 

Figure 5.16a depicts in a graphical way how an inference is bound to domain-
knowledge types via the intermediate route of knowledge roles. The graphical conventions 
used in this figure are discussed further on. The inference-domain mappings realize in fact 
a function-data decoupling, a feature we discuss in more detail in the final section of the 
chapter. As we will see, knowledge modelling differs in this significantly from standard 
methods, where the name of the domain object types would have been directly associ-
ated with the function. Figure 5.16b shows the data-flow diagram (DFD) representation of 
Figure 5.16a. In this figure the knowledge roles have disappeared and are replaced with 
domain-specific data types. The DFD representation is much simpler but makes reuse of 
inference knowledge more difficult. As we will see in Chapter 6, the introduction of knowl- 
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Figure 5.16 
Part a): The sample inference "cover" has three knowledge roles, each of which is bound to domain objects that 
can play this role. Here, knowledge modelling differs significantly from standard methods, where the name of the 
domain object types would have been directly associated with the function. Part b) shows the data-flow diagram 
(DFD) representation. 
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edge roles enables us to construct catalogs of recurring reasoning patterns. The price we 
have to pay is the increased complexity of the specification of leaf functions. 

The notion of "knowledge role" gives us a separate vocabulary for talking about the 
behavior of domain objects in the reasoning process. Each reasoning task has its own role 
vocabulary, independent of the domain the task is performed in. For example, in diagnostic 
tasks we encounter knowledge roles such as hypothesis,  complaint, differential  (= the active 
set of hypotheses), finding, and evidence.  

5.5.3 Transfer Functions: Communicating with the External World 

In the knowledge model we abstract from the communication with other agents: users, 
other systems. The emphasis lies on the structure of the reasoning process. However, 
one cannot completely leave out the interaction with the external world. Some of these 
interactions play a role in the reasoning process itself, for example, obtaining additional 
observations in a diagnostic process. For this reason, we introduce the notion of transfer 
function. A transfer function is a function that transfers an information item between the 
reasoning agent described in the knowledge model and the outside world (another system, 
some user). Transfer functions are black boxes from the knowledge-model point of view: 
only their name and I/O are described. Detailed specifications of the transfer functions 
should be placed in the communication model (see Chapter 9). 

Transfer functions have standard names. These names are based on two properties that 
transfer functions have: who has the initiative and who is in possession of the information 
item being transferred? Based on these properties we distinguish four types of transfer 
functions: 

1. Obtain The reasoning agent requests a piece of information from an external agent. 
The reasoning agent has the initiative. The external agent holds the information item. 

2. Receive The reasoning agent gets a piece of information from an external agent. The 
external agent has the initiative and also holds the information item. 

3. Present The reasoning agent presents a piece of information to an external agent. 
The reasoning agent has the initiative and also holds the information item. 

4. Provide The system provides an external agent with a piece of information. The 
external agent has the initiative. The reasoning agent holds the information item. 

Figure 5.17 shows this typology of transfer functions based on the dimensions "ini-
tiative" and "information holder." The transfer functions obtain and receive are the ones 
most commonly found in knowledge models. In particular, obtain is frequently used; re-
ceive appears in many real-time tasks and is typically associated with asynchronous con-
trol. Figure 5.18 shows the specification of the transfer function to obtain a finding in the 
car-diagnosis example. The transfer function is a black box from the knowledge-model 
point of view and defines just the input-output roles and the transfer-function type. Other 
information about the transfer function should be placed in the communication model. 
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Figure 5.17 
Typology of transfer functions based on the "initiative" and "information-holder" dimensions. 

TRANSFER-FUNCTION obtain; 
TYPE: 

OBTAIN; 
ROLES: 

INPUT: expected-finding; 
OUTPUT: actual-finding; 

END TRANSFER-FUNCTION obtain; 

Figure 5.18 
Specification of a transfer function to obtain a finding. The transfer function is a black box from the knowledge-
model point of view and defines just the input-output roles and the transfer-function type (obtain, receive, present, 
or provide). 

5.5.4 Depicting Data Dependencies between Inferences 

Together, the inferences form the building blocks for a reasoning system. They define the 
basic inference actions that the system can perform and the roles the domain objects can 
play. The combined set of inferences specifies the basic inference capability of the target 
system. The set of inferences can be represented graphically in an inference structure. 
Figure 5.19 shows an example of such an inference structure for the car-diagnosis problem. 
In an inference structure the following graphical conventions are used: 

• Rectangles represent dynamic knowledge roles. The name of the knowledge role is 
written in the rectangle. 

• Ovals represent inferences. Arrows are used to indicate input-output dependencies 
between roles and inferences. 
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Figure 5.19 
Inference structure for a simple diagnosis application. 

• A rounded-box notation is used to indicate a transfer function. An example is the obtain 
function in Figure 5.19. 

• A static role name is written between two thick horizontal lines. This representation is 
purposely similar to data stores in DFDs, as static roles incorporate the same "storage" 
notion. Static roles are connected via a directed line to the inference in which they are 
used. Including static roles is traditionally optional in inference structures, where the 
main emphasis lies on the dynamic data-flow aspects. We usually include static roles 
in the inference structure during the construction process. 

• A knowledge role constitutes a functional name for a set of domain objects that can play 
this role. Some inferences operate on or produce one particular object, others work on 
a set of these objects. This can lead to ambiguities in inference structures, for example, 
if one inference produces one object and another inference works on a set of these 
objects, possibly generated by some repeated invocation of the first inference. The 
graphical notation allows for making this distinction explicit: if a data-dependency line 
starts with a small solid circle, it indicates that the input or output should be interpreted 
as a set of objects playing this role. This notation is used in various places in this book, 
e.g., the inference structure for classification in the next chapter (see Figure 6.3). 

Figure 5.19 shows examples of the graphical conventions. It depicts an inference struc-
ture for the car-diagnosis example. The cover inference takes as input the dynamic role 
complaint  and produces a hypothesis as output. The causal-model  is used as a static role 
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Figure 5.20 
Inference structure in which the roles are annotated with domain-specific examples. 

by this inference. The predict inference delivers an expected finding for the hypothesis, 
typically some observation that could act as support evidence for this hypothesis. The in-
ference structure also contains a transfer function obtain (cf. the rounded-box notation) 
for "getting" the actual finding. The third inference is a simple comparison of the actual 
finding with the expected finding. The result is some equality value. 

An inference structure is an abstract representation of the possible steps in the reason-
ing process. To make it a bit less abstract one can also construct an annotated inference 
structure. In this figure all knowledge roles are annotated with domain-specific examples. 
Figure 5.20 shows an annotated version of the inference structure for the car-diagnosis 
example. It should be noted that, although there are some similarities between inference 
structures and DFDs, the differences are also significant. The static roles typically cor-
respond to data stores in DFDs; the dynamic roles would need to be represented as data 
flows. Control flows are obsolete in inference structures. Actors are not shown in inference 
structures, as those would be part of the communication model. 

The inference structure summarizes the basic inference capabilities of the prospective 
system. It also defines the vocabulary and dependencies for control, but not the control 
itself. This latter type of knowledge is specified as task knowledge. 
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5.6 Task Knowledge 

Reasoning always has a "reason." In other words, an important aspect of knowledge is what 
we want to do with it. What are the goals we intend to achieve by applying knowledge? 
We mention some typical goals: 

• We want to assess a mortgage application in order to minimize the risk of losing money. 
• We want to find the cause of a malfunction in a photocopier in order to restore service 

as quickly as possible. 
• We want to design an elevator for a new building. 

Task knowledge is the knowledge category that describes these goals and the strate-
gies that will be employed for realizing goals. Task knowledge is typically described in 
a hierarchical fashion: top-level tasks such as DESIGN-ELEVATOR are decomposed into 
smaller tasks, which in turn can be split up into even smaller tasks. At the lowest level of 
task decomposition, the tasks are linked to inferences and transfer functions. 

Two knowledge types play a prominent role in the description of task knowledge: the 
task and the task method. A task defines a reasoning goal in terms of an input-output 
pair. For example, a DIAGNOSIS task typically has as input a complaint, and produces as 
output a fault category plus the supporting evidence. A task method describes how a task 
can be realized through a decomposition into subfunctions plus a control regimen over the 
execution of the subfunctions. The task and the task method can best be understood as 
respectively the "what" view (what needs to be done) and the "how" view (how is it done) 
on reasoning tasks. 

Figure 5.21 shows a graphical representation of the hierarchical structure of task 
knowledge. In this case, a top-level task DIAGNOSIS is decomposed by a task method 
DIAGNOSIS-THROUGH-GENERATE-AND-TEST. This leads to the four subfunctions we al- 
ready encountered in the previous section: three inferences and one transfer function. In 
most real-life models, one level of decomposition is insufficient. In that case, a top-level 
task is decomposed in several new tasks, which again are decomposed through other meth-
ods, and so on. At the lowest level of decomposition, the inferences and transfer functions 
appear. Tasks that are not decomposed further into other tasks are called primitive tasks; 
the other tasks are called composite tasks. 

5.6.1 Task 

A task defines a complex reasoning function. The top-level task typically corresponds to a 
task identified in the task model (cf. Chapter 3). The specification of a task tells us what 
the inputs and the outputs of the task are. The main difference with traditional nonleaf 
function descriptions in DFDs is that the data manipulated by a task are described in a 
domain-independent way. For example, the output of a medical diagnosis task would not 
be a "disease," but an abstract name such as "fault category." 
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Figure 5.21 
Task-decomposition diagram for the car-diagnosis application showing the two main task-knowledge types: "task 
and "task method." Only one single level of task-decomposition is present, so diagnosis is defined here as a 
primitive task, which decomposes directly into leaf functions. 

Figure 5.22 shows a simple specification of the DIAGNOSE task. The GOAL and 
SPECIFICATION slots give an informal textual description of, respectively, the goal of the 
task and the relation between task input and output. Note that there is no domain-dependent 
term to be found in the definition. The specification talks about a "system" about which 
we have received a "complaint." As we shall see, this type of definition may sometimes be 
a bit harder to read because of its generic character, but it enables us to employ powerful 
forms of reuse. 

Task I/O is, just like inferences, specified in terms of functional role names. There are, 
however, two main differences with inferences: 

1. We do not include static roles in task specifications. Static roles are only introduced at 
the level of inferences. 

2. We do not specify the mapping of the roles onto domain-specific terms. The mapping 
is an indirect one: task roles are linked to inference roles through the control structure 
(see the next subsection). Inference roles each have an associated mapping to domain 
constructs. 

113 
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TASK car-diagnosis; 
GOAL: 

" Find a likely cause for the complaint of the user"; 
ROLES: 

INPUT: 
complaint: "Complaint about the behavior of the car"; 

OUTPUT: 
fault-category: "A hypothesis explained by the evidence"; 
evidence: 'Set of observat.,ons obtained during the 

diagnostic process"; 
SPEC: 

" Find an initial state that explains the complaint and is 
consistent with the evidence obtained"; 

END TASK car-diagnosis; 

Figure 5.22 
Specification of the car-diagnosis task. 

Each task should have a corresponding task method that describes how the task is 
realized in terms of subtasks and/or inferences'. 

5.6.2 Task Method 

A task method describes how a task is realized through a decomposition into subfunctions. 
Such subfunctions can either be another task, an inference defined in the inference knowl-
edge, or a transfer function such as obtain. The core part of a method is formed by the 
so-called control structure. This control structure describes in what order the subfunctions 
should be carried out. The control structure typically reads like a small program, in which 
the subfunctions are the procedures and the roles act as parameters of the procedures. The 
control structure is intended to capture the reasoning strategy employed in solving a prob-
lem. 

A task method may define additional task roles, which are used to store temporary 
reasoning results. A typical example of such an additional task role is a hypothesis  in 
which the candidate solution that is currently being pursued is stored. In Figure 5.23 a 
sample task method for the task DIAGNOSE is given. The method decomposes the task 
into four subfunctions: three inferences and one transfer function. The control specifies a 
generate-and-test strategy: 

1. At the start of the task the inference cover is invoked to generate a candidate solution 
(the hypothesis) on the basis of the original complaint. 

I Actually, it is allowed to define multiple methods for the same task. In that case, we need additional knowl-
edge to choose dynamically a particular method. This leads to a much more complicated but also more flexible 
system. We come back to this issue in Chapter 13. 

we  AL Am..1.11110111011.11110.2ra 
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TASK-METHOD diagnosis-through-generate-and-test; 
REALIZES: car-diagnosis; 
DECOMPOSITION: 

INFERENCES: cover, predict, compare; 
TRANSFER-FUNCTIONS: obtain; 

ROLES: 
INTERMEDIATE: 

hypothesis: "A candidate solution"; 
expected-finding: "The finding predicted, 

in case the hypothesis is true"; 
actual-finding: "The finding actually observed"; 
result: "The result of the comparison"; 

CONTROL-STRUCTURE: 

WHILE NEW-SOLUTION cover (complaint -> hypothesis); 
DO 

predict (hypothesis -> expected-finding) ; 
obtain ( expected-finding -> actual-finding) ; 
evidence := evidence ADD actual-finding; 
compare(expected-finding + actual-finding -> result); 
IF result == equal; 

THEN "break from loop"; 
END IF 

END WHILE 

IF result == equal 
THEN fault-category := hypothesis; 
ELSE "no solution found"; 

END IF 

END TASK-METHOD diagnosis-through-generate-and-test; 

Figure 5.23 
Example task method for the car-diagnosis task. This method follows a generate-and-test strategy. 

2. Subsequently, the candidate solution is tested to see whether it is consistent with other 
data. This test consists of specifying an expected finding for the hypothesis (the in-
ference predict), obtaining the actual value of the finding from the user or some other 
external agent (the transfer function obtain), and finally comparing the actual and the 
expected finding to see whether these are equal. 

3. The observations made by obtain are added to the knowledge role evidence,  the second 
output of diagnosis which collects all additional data gathered. 

4. If the comparison delivers a difference, the cover inference is invoked again to generate 
another hypothesis, and the testing process is repeated, 

5. The task method for diagnosis terminates if either the inference compare returns an 
equal value (in which case the current hypothesis becomes the solution) or the cover 
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inference fails to produce a new hypothesis, in which case the task method fails to find 
a solution. 

The strategy sketched is of course just one possibility. In this particular example, the 
method apparently assumes that there exist observations that can verify the existence of a 
hypothesis. In Chapter 6 we will see a somewhat more comprehensive diagnostic strategy, 
in which all candidate solutions are generated in the first step. 

In the appendix a full description of the pseudocode language is given. Here, it suf-
fices to say that the imperative pseudocode for control structures typically consists of the 
following elements: 

• A simple "procedure" call, i.e., an invocation of a task, an inference, or a transfer func-
tion. Note that we only use the dynamic roles as arguments for inference invocations, 
because these vary over time. 

• Data operations on role values: e.g., assign a value to a role, add a set of values to a 
role, and so on. 

• The usual control primitives for iteration and selection: repeat-until, while-do, if-then-
else. 

• Conditions used in control statements (e.g., until ....) are typically statements about 
values of roles (e.g., "result == equal"). 

• There are two special types of conditions. First, one can ask of an inference whether 
it is capable of producing a new solution. This is typically used in loop conditions. 
An example of the use of the NEW-SOLUTION predicate can be found at the start of the 
control structure in Figure 5.23. Second, one can ask whether an inference produces a 
solution with a particular input. This predicate is called HAS-SOLUTION. It is particu-
larly useful for inferences that can fail, such as tests and verifications. The method for 
assessment (see Figure 6.5) contains an example of the use of HAS-SOLUTION. These 
two special conditions are a direct consequence of the specific way in which the con-
trol of inferences should be viewed from a task perspective. We assume that within the 
execution of a certain task an inference has a memory, and that each invocation will 
produce a new value (in the context of this task). An inference fails if it can produce 
no more solutions. 

An alternative for the pseudocode is to model the method control with the help of an 
activity diagram. This UML notation is described in Section 14.2. Figure 5.24 shows the 
method control for the car-diagnosis task. Some people will probably prefer this graphical 
notation. 

During knowledge-model construction the task decomposition often changes a number 
of times. What was viewed as an inference early on might later be viewed as a task which 
itself can be decomposed. The main guideline to be followed here is: 

If the internal behavior of a function is important for explaining the behavior 
of the system as a whole, then one needs to define this function as a task. 
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Figure 5.24 
Alternative representation of method control using an activity diagram. 

This guideline is based on the fact that inferences are treated as black boxes. The behavior 
of the inference is assumed to be self-explanatory if one looks at the inputs and outputs. 
Note that the black box view of inferences is only true in the context of the knowledge 
model. The inference might well be realized in the final system by a complex computa-
tional technique. Inferences provide us with a potentially powerful abstraction technique 
in the analysis stage, which helps us to shift much of the burden to the design phase. We 
come back to this issue in the chapter on the process of knowledge-model construction 
(Chapter 7). 

5.7 Typographic Conventions 

In this book we use typographic conventions to indicate knowledge-model component 
types such as task, role, inference, and so on. The conventions are listed in Table 5.1. 



118 Chapter 5 

Construct Typography Example 
Task Capital letters DIAGNOSIS 
Method Small capitals GENERATE & TEST 

Inference, transfer function Sans serif abstract, obtain 
Role Bold underlined hypothesis 
Domain type Bold car 
Domain instance Fixed-width my-car 
Metatype Bold capitals CONCEPT 

Table 5.1 
Typographic conventions used in this book for knowledge-model components. The category "metatype" is used 
to indicate elements of the language itself. 

5.8 Comparison with Other Analysis Approaches 

At several places in this chapter we have made remarks about the similarities and differ-
ences between knowledge analysis in CommonKADS and general analysis techniques. We 
summarize the main issues because a good insight may help to understand and appreciate 
the specific demands and requirements of knowledge-intensive applications. 

5.8.1 Four Major Differences 

There are four crucial differences between the CommonKADS knowledge model and more 
general analysis approaches. These differences all arise from the specific nature of knowl-
edge analysis. 

Difference 1: "Data model" contains both data and knowledge The "data model" of 
a knowledge model contains elements that are usually not found in traditional data models. 
As we saw in the car example, the representation of even simple pieces of knowledge poses 
specific problems. This results from the fact that knowledge can be seen as "information 
about information." It implies that parts of the "data model" describe how we should 
interpret or use other parts. For example, if we have information types for observations 
and diseases of patients, we also want to describe a domain-knowledge type that allows us 
to infer the latter from the former. This requires specialized modelling tools, in particular 
the construct RULE TYPE discussed in this chapter. 

Difference 2: "Functions" are described datamodel-independent In describing func-
tions, knowledge engineering has transgressed to a more sophisticated level than general 
software-engineering approaches. This is not a real surprise, because the scope of the ap-
plication tasks covered is much smaller, namely only knowledge-intensive tasks. In the 
knowledge-engineering literature, a typology of such tasks has been developed, together 
with standard functional decompositions that have proved useful for a particular task type. 
Example knowledge-intensive task types are assessment, planning, and diagnosis. 
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The availability of a catalog of functional decompositions is a powerful tool for the 
system analyst, as we will see in Chapter 6. However, this feature of knowledge mod-
elling requires that all functions are described in a domain-independent terminology. This 
means that the input/output of functions in an knowledge model is not described in terms 
of data-model elements, but in terms of task-oriented "role" names. These "roles" act as 
placeholders for data-model elements. Effectively, knowledge roles decouple the descrip-
tion of the static information structure on the one hand and the functions on the other hand. 

Decoupling of functions and data makes a knowledge model more complex, but it 
enables exploitation of powerful forms of reuse. The function-data decoupling is the main 
area in which CommonKADS differs from object-oriented approaches (see Figure 5.25). 

Difference 3: The need to represent "internal" control So far we we have mainly 
looked at the way functions and data are represented. There is also difference with respect 
to the specification of control. 

In approaches such as Modern Structured Analysis and OMT, control is specified 
through state-transition diagrams. Such diagrams are especially useful for systems in 
which information processing is mainly driven by external events. In reasoning tasks, 
however, there is usually a clear need to represent also the internal control of the reasoning 
process. The way in which the reasoning functions are ordered is an important element of 
expertise. Experts employ sophisticated reasoning strategies, which we want to capture in 
our specifications. This means that in knowledge modelling more emphasis is placed on 
specifying the sequencing of reasoning steps. Thus, the emphasis is on internal control. 

Difference 4: Knowledge model abstracts from communication aspects The empha-
sis on internal control also arises from the fact that knowledge model abstracts from all 
issues concerning interaction with the outside world. Communication is described only 
with the help of transfer functions. All details of agent-agent interaction are described in a 
separate model: the communication model (see Chapter 9). 

Keeping these differences in mind, will hopefully enable the reader to understand the 
rationale underlying the knowledge model, and explain how the elements relate to general 
software-engineering concepts. 

5.8.2 The Data-Function Debate 

If we take a somewhat broader view, we can indicate the position CommonKADS takes 
in what can be called the "data-function" debate. This term refers to the point made by 
the advocates of object-oriented analysis approaches. They reject the traditional functional 
decomposition approaches such as Structured Analysis in which the "data" are secondary 
to the functions. 0-0 people state that the information structures ("data") are usually much 
more stable (and thus less likely to change) than the functions of a system. Therefore, in 
0-0 analysis, the data view is the entry point for modelling an application domain. 
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Object-Oriented Analysis 
(OMT, Booch, ....) 

static information structure is starting point 
functions are grouped with the data 

reuse of data/function groups ("objects') 
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parallel function/data description 
reusable functional decompositions 

reusable data/knowledge types 
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Structured Analysis functional decomposition is starting point 
(Yourdon) data types are derived from DFDs 

Figure 5.25 
Schematic view of the data-function debate. In the Yourdon approach, functional decomposition is the start-
ing point of analysis; in the modern object-oriented approaches the "data" are the initial focus of attention. 
CommonKADS takes an intermediate position,assuming both data and function descriptions can be stable and 
reusable. 

In CommonKADS we take a position between these two approaches. As you will see 
in Chapter 6 we claim that functional decompositions can also be stable and potentially 
reusable, similar to the static information and knowledge structures. To enable reuse of 
both "functions" and "data", CommonKADS employs a data-function decoupling with the 
help of knowledge roles. This dual approach can also be found in the guidelines of Chap-
ter 7, where we advise you to do an initial task analysis and a domain conceptualization in 
parallel. 

Figure 5.25 gives a schematic view of the various positions taken in the data-function 
debate. 
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5.9 Bibliographical Notes and Further Reading 

The CommonKADS knowledge model is one of a series of modelling frameworks 
proposed in the knowledge engineering literature.  Some other well-known ap-
proaches are PROTEGE (Tu et al. 1995), Generic Tasks (Chandrasekaran 1988), Role-
Limiting Methods (Marcus 1988), Components of Expertise (Steels 1993), DIDS 
(Runkel et al. 1996), MIKE (Angele et al. 1998), and DESIRE (Brazier et al. 1996). Ex-
amples of the use of these approaches using the same data set can be found in two 
special issues of the International Journal of Human-Computer Studies (Linster 1994, 
Schreiber and Birmingham 1996). 

The literature on analysis models in general software engineering is immense. The 
book by Yourdon (1989), Modern Structured Analysis, is a good description of this almost 
classic approach (in the positive sense of the word). Two influential object-oriented anal-
ysis methods are the OMT approach (Rumbaugh et al. 1991) and the approach advocated 
by Booch (1994). A unification of these approaches has been proposed in the form of a 
Unified Modelling Language for object-oriented analysis (Booch et al. 1998). 
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6 
Template Knowledge Models 

Key points of this chapter: 

• Knowledge models can often partially be reused in new applications. 
• The type of task is the main guide for reuse. For most task types task tem-

plates are available: predefined decompositions into functions (tasks, infer-
ences) plus requirements about the structure of the domain knowledge. 

• This chapter contains a small set of task templates for simple problem-
solving tasks. These task templates have proved useful in practice. 

• In the modern 0-0 jargon these templates would be called "patterns" of 
knowledge-intensive tasks. 

• More task templates can be found in various repositories, although the qual-
ity and consistency vary. 

6.1 Reusing Knowledge-Model Elements 

6.1.1 The Need for Reuse 

There are several ways in which knowledge models can be used to support the knowledge-
modelling process. A potentially powerful approach is to reuse combinations of model 
elements. When one models a particular application, it is usually already intuitively clear 
that large parts of the model are not specific to this application, but re-occur in other do-
mains and/or tasks. CommonKADS (as do most other approaches to knowledge mod-
elling) makes use of this observation by providing a knowledge engineer with a collection 
of predefined sets of model elements. These catalogs can be of great help to the knowledge 
engineer. They provide the engineer with ready-made building blocks and prevent her from 
"reinventing the wheel" each time a new system has to be built. In fact, we believe that 
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these libraries are a conditio sine qua non for improving the state of the art in knowledge 
engineering. 

In this chapter we have included a number of simple partial knowledge models of the 
task template type (see further). These models have proved to be useful in developing a 
range of common straightforward systems. We expect these to be of use when modelling 
a relatively simple knowledge-intensive task. The full collection of reusable models is 
much larger, although rather heterogeneous and represented in nonstandard ways. We give 
references in the text where you can find these; the knowledge engineer tackling more 
complex problems might find them useful input. 

There is a parallel between task templates and the notion of "design patterns" 
(Gamma et al. 1995) in 0-0 analysis. Task templates can be viewed design patterns for 
knowledge-intensive tasks. We are bold enough to claim that you will find these "knowl-
edge" patterns to be more powerful and precise than those in use in 0-0 analysis, in par-
ticular because they are grounded on a decade of research and practical experience. 

6.1.2 Task Templates 

Task templates form a common type of a reusable combination of model elements. A 
task template is a partial knowledge model in which inference and task knowledge are 
specified. A task template supplies the knowledge engineer with inferences and tasks that 
are typical for solving a problem of a particular type. In addition, a task template specifies a 
typical domain schema that would be required from the task point of view (see Chapter 13 
for a discussion on the task view of domain schemas). Task templates can be used by 
the knowledge engineer as a template for a new application and thus support top-down 
knowledge analysis. 

6.1.3 Task Types 

An advantage of knowledge engineering, when compared with software engineering in 
general, is that the range of task types is limited. In cognitive psychology literature task 
typologies for knowledge-intensive (human) reasoning tasks are given. Several authors 
have adapted and refined these for use in knowledge engineering. We use the task hierarchy 
shown in Figure 6.1. 

We distinguish two groups of task types: analytic tasks and synthetic tasks. The dis-
tinguishing feature between the two groups is the "system" the task operates on. "System" 
is an abstract term for the object to which the task is applied. For example, in technical 
diagnosis the system is the artifact or device being diagnosed; in elevator configuration it 
is the elevator to be designed. In analytic tasks the system preexists although it is typically 
not completely "known." All analytic tasks take as input some data about the system, and 
produce some characterization of the system as output. In contrast, for synthetic tasks the 
system does not yet exist: the purpose of the task is to construct a system description. The 
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knowledge- 
Intensive 

task 

configuration 
design 

Figure 6.1 
Hierarchy of knowledge-intensive task types based on the type of problem being solved. 

input of a synthetic task typically consists of requirements that the system to be constructed 
should satisfy. 

Analytic and synthetic tasks are further subdivided into a number of task types, as can 
be seen in Figure 6.1. This subdivision of tasks is based on the type of problem tackled 
by the task. For example, a "diagnosis" problem is concerned with finding a malfunction 
that causes deviant system behavior. A diagnosis task is a task that tackles a diagnostic 
problem. Although in theory, "problem" and "task" are distinct entities, in practice we 
use these terms interchangeably. We often use a term such as "diagnosis" for a diagnostic 
problem as well as for the task of solving this problem. Tables 6.1 and 6.2 provide an 
overview of the main features of, respectively, analytic and synthetic task types. 

Analysis tasks A well-known analytic task type is classification. The classification 
of plants and animals is the prototypical example of this task type. In classification, an 
object needs to be characterized in terms of the class to which it belongs. The underlying 
knowledge typically provides for each class constraints on the values of object features. 
Classification usually involves "natural" (not manmade) objects. 
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Task type 1 Input Output Knowledge I Features  
Analysis System 

observations 
System 
characterization 

System model System description is 
given. 

Classification Object 
features 

Object class Feature-class 
associations 

Set of classes is 
predefined. 

Diagnosis Symptoms / 
complaints 

Fault category Model of system 
behavior 

Form output varies (causal 
chain, state, component) 
and depends on use made 
of it (troubleshooting). 

Assessment Case 
description 

Decision class Criteria, norms Assessment is performed 
at one particular point in 
time (cf. monitoring). 

Monitoring System data Discrepancy 
class 

Normal system 
behavior 

System changes over time. 
Task is carried out 
repeatedly. 

Prediction System data System state Model of system 
behavior 

Output state is a system 
description at some future 
point in time. 

Table 6.1 
Overview of analytic task types. 

Diagnosis differs from classification in the sense that the desired output is a malfunc-
tion of the system. Diagnosis of faults in an electrical network is an example of this task 
type. In diagnosis the underlying knowledge typically contains knowledge about system 
behavior, such as a causal model. The output of diagnosis (the fault category) can take 
many forms: it can be a faulty component, a faulty state, a causal chain, or even an abstract 
label without any internal system meaning. Diagnosis tasks are frequently encountered in 
the area of technical systems. 

The task type assessment is often found in financial and community service domains. 
The goal of assessment is to characterize a case in terms of a decision class. For example, 
in loan assessment the task input is a case of a person applying for a loan, and the output 
is a decision class such as "yes/no/more info needed" indicating whether a loan should be 
given or not. The underlying knowledge typically consists of a set of norms or criteria 
that are used for the assessment. The housing case in Chapter 10 is an example of an 
assessment task. 

In monitoring, the system being analyzed is of a dynamic nature, typically an on-
going process. Example monitoring tasks are nuclear plant monitoring and monitoring of 
a software project. Each monitoring cycle looks a bit like an assessment task. The main 
difference is that in monitoring the output is simply a discrepancy (is the system behavior 
normal or not?) instead of a decision class. Also, data from previous cycles are used in 
each new cycle. 

We have placed prediction also in the group of analytic tasks, although it also has 
some synthetic features. In prediction, one analyzes current system behavior to construct 

yo 
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Task type I Input I Output I Knowledge I Features 
Synthesis Require- 

ments 
System structure Elements, 

constraints, 
preferences 

System description needs 
to be generated. 

Design Require- 
ments 

Artifact 
description 

Components, 
constraints, 
preferences 

May include creative 
design of components. 

Configura- 
lion 
design 

Require- 
ments 

Artifact 
description 

Components, 
skeletal designs, 
constraints, 
preferences 

Subtype of design in 
which all components are 
predefined. 

Assignment Two object 
sets, 
requirements 

Mapping set 1 --> 
set 2 

Constraints, 
preferences 

Mapping need not be 
one-to-one. 

Planning Goals, 
requirements 

Action plan Actions, 
constraints, 
preferences 

Actions are (partially) 
ordered in time. 

Scheduling Job 
activities, 
resources, 
time slots, 
requirements 

Schedule = 
activities 
allocated to time 
slots of resources 

Constraints, 
preferences 

Time-oriented character 
distinguishes it from 
assignment. 

Modelling Require- 
ments 

Model Model elements, 
template models, 
constraints, 
preferences 

May include creative 
"synthesis." 

Table 6.2 
Overview of synthetic task types. 

a description of the system state at some future point in time. Weather forecasting is 
a prediction task. A prediction task is often found in knowledge-intensive modules of 
teaching systems, e.g., for physics. The inverse of prediction also exists: retrodiction. The 
big-bang theory is a well-known example of retrodiction. 

Synthesis tasks Design is a synthetic task in which the system to be constructed is some 
physical artifact. An example design task is the design of a car. Design tasks in general 
can include creative design of components, as is usual in car design. Creative design is too 
hard a nut to crack for current knowledge technology. In order for system construction to 
be feasible, we generally have to assume that all components of the artifact are predefined. 
This subtype of design is called configuration design. Building a boat from a set of Lego 
blocks is a well-known example of a configuration-design task. Another example is the 
configuration of a computer system. 

Assignment is a relatively simple synthetic task, in which we have two sets of objects 
between which we have to create a (partial) mapping. Examples are the allocation of offices 
to employees or of airplanes to gates. The assignment has to be consistent with constraints 
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("Boeing 747 cannot be placed on gates 35-38") as well as conform with preferences 
("KLM airplanes should be parked in Terminal 1"). 

Planning shares many features with design, the main difference being the type of 
system being constructed. Whereas design is concerned with physical object construction, 
planning is concerned with activities and their time dependencies. Examples of planning 
tasks are travel planning and the planning of building activities. Again, automation of 
planning tasks is usually only feasible if the basic plan elements are predefined. Because 
of their similarity, design models can sometimes be used for planning and vice versa. 

Scheduling often follows planning. Planning delivers a sequence of activities; in 
scheduling, such sequences of activities ("jobs") need to be allocated to resources during 
a certain time interval. The output is a mapping between activities and time slots, while 
obeying constraints ("A should be before B") and conforming as much as possible with 
the preferences ("lectures by C should preferably be on Friday"). Scheduling is therefore 
closely related to assignment, the major distinction being the time-oriented character of 
scheduling. Examples of scheduling are the scheduling of lectures at a university depart-
ment and job-shop scheduling in a process line of a factory. 

For completeness, we mention modelling as a synthetic task type.  In modelling, 
we construct an abstract description of a system in order to explain or predict certain sys-
tem properties or phenomena. Knowledge modelling itself is an example of a modelling 
task. Another example is the construction of a simulation model of a nuclear accident. 
Modelling tasks are seldom automated in a system, but are sometimes used in the context 
of knowledge management. A real-life example we have been involved with is the con-
struction of a knowledge model of the modelling expertise of a retiring expert in nuclear 
accident simulations. 

6.2 A Small Task Template Catalog 

In this chapter we have included a small task template catalog of relatively simple 
knowledge-intensive tasks. The templates were selected because they have proved use-
ful in prior knowledge-engineering projects. 

The catalog contains task templates for classification, diagnosis, assessment, moni-
toring, configuration design, assignment, planning, and scheduling. Each task template 
description consists of the following parts: 

General characterization  Describes typical features of a task: goal, input, output, ter-
minology. Also, some remarks are made about the relation with other task types. 
Default method  A method for a task type is described in terms of roles, subfunctions, 
and a description of the internal control (through a control structure). We show an inference 
structure for the functions at the lowest level of decomposition. However, the reader should 
be aware that these inferences are of a provisional nature, as in practice it might well 
be necessary to decompose one or more inferences and thus to view them as tasks with 
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internal complexity (see also the discussion in Chapter 5 of the distinction between tasks 
and inferences). 
Method variations  Some frequently occurring variations of the default method are de-
scribed. For example, in the default classification method an abstraction task could be 
included. We do not show the changed diagrams and specifications for each variation, but 
these should be straightforward to construct. 
Typical domain schema  Each method makes assumptions about the nature of the un-
derlying domain knowledge. For example, the classification method we describe makes 
assumptions about knowledge linking classes to observed features. We describe these as-
sumptions in a tentative domain schema. Please note that the word "domain" in this latter 
term should be regarded with some caution: the schema can, by definition, contain no 
domain-specific types! The schema can best be viewed as requirements on the domain 
schema that the knowledge engineer has to construct for the application. 
The issue of the relation between a method-related domain schema and a domain-specific 
schema is discussed in more detail in Chapter 13. 

The major part of this chapter presents the catalog of templates. At the end we come 
back to the issue of using these templates in an application. 

6.3 Classification 

General characterization 
Goal Classification is concerned with establishing the correct class (or 

category) for an object. The object should be available for inspec-
tion. The classification is based on characteristics of the object. 

Typical example Classification of an apple. Classification of the minerals in a rock. 
Terminology Object: the object of which one wants to find the class or cate- 

gory, e.g., a certain apple. 
Class: a group of objects that share similar characteristics, e.g., a 
Granny Smith apple. 
Attribute: a characteristic that can either be observed or inferred, 
e.g., the color of an apple. 
Feature: an attribute-value pair that holds for a certain object, 
e.g., "color = green." 

Input The object of which the class needs to be established. 
Output The class(es) found. 

Features Classification is one of the simplest analytic tasks, for which 
many methods exist. Other analytic tasks can sometimes be re- 
duced to a classification problem. Especially for diagnosis is this 
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often done. Full diagnosis requires knowledge about causal be-
havior, but if one can simplify this to direct associations between 
symptoms and malfunctions, then it takes the form of a classifi-
cation problem. 

Default method A first decision one has to make is whether one chooses a data-driven 
or a solution-driven method. The data-driven approach starts off with some initial fea-
tures, which are used to generate a set of candidate solutions. A solution-driven method 
starts with the full set of possible solutions and tries to reduce this set on the basis of the 
information that comes in. 

In most applications the solution-driven approach works best. In the first step we 
generate a full set of candidate solutions, e.g., all potential apple classes. Then we prune 
this set by gathering information about the object. We specify a characteristic that we are 
interested in, and obtain its value. On the basis of this new information, we eliminate 
candidate solutions that are inconsistent with this information. We repeat this process until 
we have no further means of reducing the candidate set. 

The specification of this method is shown in Figure 6.2. The first while loop generates 
the set of candidate solutions. The second while loop prunes this set by obtaining new 
information. The method finishes if one of the following three conditions is true (see the 
condition of the second while loop): 

1. A single candidate remains. This class becomes the solution. 
2. The candidate set is empty. No solution is found. 
3. No more attributes remain for which a value can be obtained. A partial solution is 

found in the form of the remaining set of candidates. 

Figure 6.3 shows the corresponding inference structure. Three inferences are used in 
this method plus a transfer function for obtaining the attribute value: 

• Generate candidate In the simplest case, this step is just a look-up in the knowledge 
base of the potential candidate solutions. 

• Specify attribute There are several ways of realizing this inference. The simplest 
way is to just do a random selection. This can work well, especially if the "cost" of 
obtaining information is low. Often however, a more knowledge-intensive attribute 
specification is required. One possibility is to define an explicit attribute ordering as is 
the case in a decision tree. This requires domain knowledge of the form "if attribute a 
has value x then ask about attribute b." Often, experts can provide this type of attribute-
ordering information. The specification knowledge then takes the form of a decision 
tree. A more comprehensive approach is to compute the attribute that has the highest 
information potential. Several algorithms for this exist. This last approach can be very 
efficient but may lead to system behavior that (although theoretically optimal) is alien 
to users and experts. 
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TASK classification; 
ROLES: 

INPUT: object: "Object that needs to be classified"; 
OUTPUT: candidate-classes: "Classes consistent with the object"; 

END TASK classification; 

TASK-METHOD prune-candidate-set; 
REALIZES: classification; 
DECOMPOSITION: 

INFERENCES: generate, specify, match; 
TRANSFER-FUNCTIONS: obtain; 

ROLES: 
INTERMEDIATE: 

class: "object class"; 
attribute: "a descriptor for the object"; 
new-feature: "a newly obtained attribute-value pair" 
current-feature-se: "the collection of features obtained"; 
truth-value: "indicates whether the class is consistent with 
object features obtained during the reasoning process"; 

CONTROL-STRUCTURE: 
WHILE NEW-SOLUTION generate(object -> class) DO 

candidate-classes := class ADD candidate-classes; 
END WHILE 
WHILE NEW-SOLUTION specify(candidate-classes -> attribute) 

AND SIZE candidate-classes > 1 DO 
obtain(attribute -> new-feature); 
current-feature-set := new-feature ADD current-feature-set; 
FOR-EACH class IN candidate-classes DO 
match(class + current-feature-set -> truth-value); 
IF truth-value == false 
THEN 

candidate-classes := candidate-classes SUBTRACT class; 
END IF 

END FOR-EACH 
END WHILE 

END TASK-METHOD prune-candidate-set; 

Figure 6.2 
Pruning method for classification. 

• Obtain feature Usually, one should allow the user to enter an "unknown" value. 
Also, sometimes there is domain knowledge that suggests that certain attributes should 
always be obtained together. 

• Match This inference is executed for every candidate, and produces a truth value 
indicating whether the candidate class is consistent with the information collected so 
far. The inference should be able to handle an "unknown" value for certain attributes. 
The normal approach is that every candidate is consistent with an "unknown" value. 
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truth 
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Figure 6.3 
Inferences structure for the pruning classification method. 

Method variations 

• Limited candidate generation If the full set of candidate solutions is too large, one 
adds a small data-driven element into the method by giving a small set of features 
as input to the generate step, with the idea that only those candidates are considered 
that are consistent with these initial data. In most cases the choice of this initial set 
will be quite straightforward. This set can either contain a fixed set of attributes or be 
dependent on the context (e.g., the location where the object is found). 

• User control over attribute selection In some applications we have seen that users 
want to control the order in which new information is provided. In this case, the at-
tribute produced by the specify inference can be used as a suggestion to the user, who 
has the final control over the information to be provided. This can be achieved by 
changing the control flow slightly. Replace the obtain function in the second while 
loop of the control structure (see Figure 6.2) with the following two transfer-function 
invocations: 

1. A present function that shows the user the suggested new information item (i.e., a 
certain attribute). 
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2. A receive function that "reads in" the new feature. It can be different from the one 
suggested. 

• Hierarchical search through class structure In some domains, natural subtype hi-
erarchies of classes exist. Such a hierarchy can be exploited in two ways: 

1. The hierarchy is used for attribute selection, because the supertypes often suggest 
attributes that discriminate between disjunct sets of candidates. The supertypes 
themselves are not used in the candidate set. 

2. The hierarchy is used to guide the pruning process. Supertypes are incorporated in 
the candidate set. If a supertype is ruled out, all its subtypes are also ruled out. 

Typical domain schema Figure 6.4 shows a sort of minimal domain schema for classifi-
cation. The object-type is the overall category to which the objects to be classified belong, 
e.g., apple or rock. The object type is linked to multiple object-classes that represent the 
categories that will act as output of the classification task, e.g., a James Grieves apple 
or a granite rock. An object type can be characterized by a number of attributes, such as 
color, shape, composition, and so on. The main knowledge category used in classification 
is specified in the class-constraint rule type, which allows us to define dependencies be-
tween object classes and attribute values, e.g., the object class James Grieves restricts 
the value of the color attribute to green or yellow-green. 

6.4 Assessment 

General characterization 
Goal Find a decision category for a case based on a set of domain- 

specific norms. 

Typical example Decide whether a person gets a loan she applied for. 
Terminology Case: the case to be assessed, e.g., data about the lender and the 

requested loan. 
Decision category: e.g., eligible-for-loan yes or no. 
Norms: domain knowledge that is used in making the decision, 
e.g., rules relating income to the amount requested. 

Input Data about the case (always), case-specific norms (sometimes). 
Output A decision category. 

Features The structure of assessment can look very much like monitoring. 
There are two main differences. First, in monitoring there is al-
ways a time aspect: assessment is done at one particular point 
in time, while in monitoring the task is performed at intervals. 
Second, the output is different. Monitoring delivers a discrep-
ancy and not a decision category. This second difference is rather 
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Figure 6.4 
Typical domain schema for classification tasks. 

subtle and often not so clear. With some effort one could view 
monitoring as a succession of assessment tasks in which previous 
results are used again in a new assessment cycle. 

Default method In Chapter 10 we will see an example of an assessment method. It turns 
out that this assessment model is, with some variations, widely applicable to simple as-
sessment tasks. The method specification is shown in Figure 6.5. It contains the following 
inferences: 

• Abstract case Almost always, some of the case data need to be abstracted. For 
example, in the housing application (see Chapter 10) the age and household type of the 
applicant need to be abstracted. The abstractions required are determined by the data 
used in the norms (see further). Abstraction is modelled here as an inference that is 
repeated until no more abstractions can be made. The abstracted features are added to 
the case. 

• Specify norms After abstraction, the first step that needs to be taken is to find the 
norms or criteria that can be used for this case. In most assessment tasks the norms 
used are at least partially dependent on the case, and the case thus acts as an input role 

10, 1•110111110.0.10004,m ,,,,  
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TASK assessment; 
ROLES: 

INPUT: case-description: The case to be assessed'; 
OUTPUT: decision: "the result of assessing the case"; 

END TASK assessment; 

TASK-METHOD assessment-with-abstraction; 
REALIZES: assessment; 
DECOMPOSITION: 

INFERENCES: abstract, specify, select, evaluate, match; 
ROLES: 

INTERMEDIATE: 
abstracted-case: The raw data plus the abstractions"; 
norms: "The full set of assessment norms"; 
norm: "A single assessment norm"; 
norm-value: "Truth value of a norm for this case"; 
evaluation-results: "List of evaluated norms"; 

CONTROL-STRUCTURE: 
WHILE 

HAS-SOLUTION abstract(case-description -> abstracted-case) 
DO 

case-description := abstracted-case; 
END WHILE 
specify(abstracted-case -> norms); 
REPEAT 

select(norms -> norm); 
evaluate(abstracted-case + norm -> norm-value); 
evaluation-results := norm-value ADD evaluation-results; 

UNTIL 
HAS-SOLUTION match(evaluation-results -> decision); 

END REPEAT 
END TASK-METHOD assessment-with-abstraction; 

Figure 6.5 
Method for assessment. 

for this inference. An example of a norm in a loan assessment application would be 
"loan amount matches income." 

• Select norm From the set of norms generated by the previous inference, one norm 
needs to be selected for evaluation. In the simplest case, this selection is done at ran-
dom. Often however, there is domain knowledge available that indicates an ordering 
of norms evaluation. This knowledge can be used to guide the selection. It is not nec-
essary for the selection knowledge to be complete: the system can always fall back on 
random selection as the default method. 

• Evaluate norm Evaluate the selected norm with respect to the case data. This func-
tion produces a truth value for the norm, e.g., "loan amount matches income is false." 
This function is usually a quite straightforward computation. 
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Figure 6.6 
Inference structure of the assessment method. 

• Match to see whether a solution can be found This inference checks whether the 
results of the evaluation lead to a decision. Sometimes, the truth value of one norm is 
sufficient to arrive at a decision. For example, if in the housing application in Chap-
ter 10 one of the four norms turns out to be false for a certain case, the decision found 
by the match function is "not eligible for this house." 

The inferences described are shown graphically in the inference structure of Figure 6.6. 

Method variations One variation of assessment is demonstrated by the application in 
Chapter 10: some norms might be case-specific. For example, in the housing application 
(see Chapter 10) some norms were residence-specific, and could therefore not be part of 
the knowledge base. The method adaptations are relatively simple: make sure the case- 

Chapter 
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Figure 6.7 
Domain schema for the assessment method. 

specific norms are introduced as an additional task input, and act as additional input to the 
specify and/or evaluate functions. This variation is depicted in Figure 10.5. 

In some applications case abstraction is not needed, and can therefore be left out. 
This usually does not mean that there is no abstraction, but that the input data are already 
provided in an abstracted form! 

Another variation already mentioned above is the knowledge-intensiveness of the 
norm-selection function. This can be done randomly, or be guided by heuristic or statistical 
knowledge (e.g., "highest predictive value"). A smart selection order can be a key to effi-
cient realization of complex assessment problems. Another issue is that norm-evaluation 
order is typically dictated by human expertise, and is only acceptable if done in a way 
understandable to experts. 

Typical domain schema An overview of this assessment domain schema is given in 
Figure 6.7. There are four main information and knowledge types used in the default 
method: 
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1. Specification of case data: this is often a combination of features of two domain types, 
e.g., the applicant and the requested loan (in the loan assessment domain). 

2. Case abstraction knowledge: specifies dependencies between case data (see the has-
abstraction rule type in Figure 6.7). 

3. Norm-evaluation knowledge: specifies logical dependencies between case data and 
norms. As discussed, norm-ordering knowledge can be added as well. 

4. Decision knowledge: specifies the decision options that can act as task output, as well 
as logical dependencies between norm values and a particular decision. 

This schema is phrased in domain-neutral terms. For a particular application these 
types have to mapped onto domain-specific types. For example, the case data have to be 
linked to domain types that represent the case, e.g., a loan-applicant and a loan. 

6.5 Diagnosis 

General characterization 
Goal Find the fault that causes a system to malfunction 

Typical example Diagnosis of a technical device, such as a copier. 
Terminology Complaint/symptom: the data that initiate a diagnostic process 

Hypothesis: a potential solution (thus a fault) 
Differential: the set of active hypotheses 
Finding(s)/evidence: additional data about the system being di-
agnosed 
Fault: the solution found by the diagnostic reasoning process. 
The nature of the fault representation varies, e.g., an internal sys-
tem state, a component, a causal chain, or a heuristic label. 

Input  Symptoms and/or complaints 
Output Fault(s) plus the evidence gathered for the fault(s) 

Features In principle, a diagnosis task should always have some model of 
the behavior of the system being diagnosed. Sometimes however, 
a diagnosis task is reduced to a classification task by replacing 
the behavioral model with direct associations between symptoms 
and faults. In the default method we assume that the underlying 
domain knowledge contains an (albeit quite simple) causal model 
of system behavior. 

Default method The default method is somewhat different from the method used in the 
car-diagnosis application of Chapter 5. The method assumes a simple causal model in 
which symptoms and potential faults are placed in a causal network, and in which inter-
nal system states act as intermediate nodes. The network also contains causal links that 
indicate typical findings for some state (see the domain schema further on). 
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TASK diagnosis; 
ROLES: 

INPUT: 
complaint: "Finding that initiates the diagnostic process"; 

OUTPUT: 
faults: "the faults that could have caused the complaint"; 
evidence: "the evidence gathered during diagnosis"; 

END TASK diagnosis; 

TASK-METHOD causal-covering; 
REALIZES: diagnosis; 
DECOMPOSITION: 

INFERENCES: cover, select, specify, verify; 
TRANSFER-FUNCTIONS: obtain; 

ROLES: 
INTERMEDIATE: 
differential: 'active candidate solutions"; 
hypothesis: "candidate solution"; 
result: "boolean indicating result of the test"; 
expected-finding: "data one would normally expect to find"; 
actual-finding: "the data actually observed in practice'; 

CONTROL-STRUCTURE: 
WHILE NEW-SOLUTION cover(complaint -> hypothesis) DO 

differential := hypothesis ADD differential; 
END WHILE 
REPEAT 

select(differential -> hypothesis); 
specify(hypothesis -> observable); 
obtain(observable -> finding); 
evidence := finding ADD evidence; 
FOR-EACH hypothesis IN differential DO 

verify(hypothesis + evidence -> result); 
IF result == false 
THEN differential := differential SUBTRACT hypothesis; 

END IF 
END FOR-EACH 

UNTIL 
SIZE differential <= 1 OR "no more observables left"; 

END REPEAT 
faults := differential; 

END TASK-METHOD causal-covering; 

Figure 6.8 
Default causal-covering method for the diagnosis task. 
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Figure 6.9 
Inference structure for the default diagnostic method. 

Figure 6.8 shows the method specification. The corresponding inference structure 
is shown in Figure 6.9. The method follows a generate-and-test strategy. The method 
decomposes the diagnosis task into five subfunctions: four inferences and one transfer 
function, which are briefly discussed below. 

• Cover This inference searches backward through a causal network to find potential 
causes of the complaint. This inference is executed until no more hypotheses can be 
found. The set of hypotheses is placed in the differential. 

• Select  The select inference selects one hypothesis from the differential. We as-
sume that a simple form of preference knowledge is used in this selection process, 
e.g., knowledge about the a priori probability of the fault. 

• Specify This inference specifies some observable entity, the value of which can be 
used to limit the number of candidate faults. The observable may not only tell us 
something about the presence of the hypothesis that acts as input for this step but can 
also be used to rule out other hypotheses. 

• Obtain This is a simple transfer function to obtain the actual value of the observable 
used for testing the candidates. 

• Verify This inference is used to check a candidate fault (a hypothesis). The result is a 
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boolean, indicating whether the candidate should be kept in the differential. The verify 
step can be modelled as a single inference in the case of a simple verification method 
such as the one used in the car-diagnosis application, where the domain knowledge 
is assumed to contain direct association between hypotheses and expected values of 
observables. However, in many applications the verify step will need to be modelled in 
more detail. Some frequently occurring variations are discussed further on. 

The last four functions are executed in a loop in which the candidates are tested in 
the order dictated by the select inference. The loop terminates either when the differential 
contains at most one hypothesis or when no more observables can be specified. Thus, the 
method can lead to three situations: 

1. The differential is empty: no fault is found. This implies that the evidence is inconsis-
tent with all faults known to the system. 

2. Precisely one solution is found. This is usually the ideal outcome. 
3. A set of faults remains The system cannot differentiate between the remaining fault 

candidates. 

Method variations The method sketched is in fact a simple form of what is called 
"model-based diagnosis" in the literature. There is a complete research field connected 
to diagnosis, and knowledge engineers interested in complex diagnostic applications will 
probably make themselves familiar with this literature. A good starting point is the library 
of diagnostic methods described by Benjamins (1993). The default method described here 
is a variation of one of the methods described by Benjamins. Here, we limit the discussion 
to a few common and relatively simple extensions and variations of the diagnostic method 
without any claim of completeness. 

• Verification through explanation or consistency In the verify step several tech-
niques can be used. For example, one can either require that all findings need to be 
fully explained by the hypotheses, or alternatively that the hypotheses only need to be 
consistent with the evidence found. The latter option is the most common one, because 
we usually do not have complete knowledge to enforce explanation-based diagnosis. 
Mixed forms are also possible, e.g., by stating that only a subset of the findings needs 
to be explained. One usually requires that at least the initial complaint is explained. 

• Abstraction of findings Often it is useful to add an inference in which one tries to 
find an abstraction of the findings obtained. Knowledge about faults is often expressed 
in abstract terminology, which does not relate directly to the findings found. 

• Multiple faults The default method assumes that there is only one fault that causes 
the complaint. If this assumption cannot be made, the method has to be refined. This 
can be done by inserting an inference after the cover step that transforms the differential 
into a set of potential fault sets. A common way of realizing this inference is through 
set covering. 
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Figure 6.10 
Typical domain schema for diagnosis. 

• Fault selection A the end of the method we can introduce an inference that, if nec-
essary, selects the most promising ones from the remaining fault candidates. Several 
preference techniques exist for this. The introduction of this step is particularly useful 
if the method is extended to cope with multiple faults, because in that case the number 
of hypotheses usually increases considerably and the verification step may not be able 
to rule out a sufficient number of candidates. 

• Add simulation methods In the verification step one can use simulation methods to 
derive expected values for findings. This requires two major extensions: 

1. Additional domain knowledge about system behavior, e.g., a model that can be 
used for quantitative or qualitative prediction of behavior. 

2. A separate prediction step within verification. Note that prediction can be a com-
plex task in its own right. 

Typical domain schema Figure 6.10 shows a typical domain schema for simple diagno-
sis. It assumes that each system being diagnosed can be characterized in terms of a number 
of system features. There are two types of system features, namely those that can be ob-
served (e.g., a certain color) and those that represent an internal state of the system (e.g., 
some disease process). Faults are defined as subtypes of internal states, meaning that not 
every internal system state may act as a fault. For example, often only the starting points 
in the causal networks are allowed as faults, as is the case in the car-diagnosis example. 

yt 
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The structure of the causal system model used by the cover and the specify inference 
(see the static roles in Figure 6.9) is represented as a rule type causal-dependency. This 
rule type describes rules in which the antecedent (some expression about an internal system 
state) can-cause the consequent (some expression about a system feature, which could be 
either another state or an observable value). The connection symbol can-cause is chosen 
deliberately to make clear that the causal transition is not certain, but depends on unknown 
other factors. 

6.6 Monitoring 

General characterization 
Goal Analyze an ongoing process to find out whether it behaves ac- 

cording to expectations. 
Typical example Monitoring progress in a software project. Monitoring an indus- 

trial plant. 
Terminology Parameter: an entity for which the current value can be relevant 

to the purpose of detecting abnormal behavior. 
Norm: the expected value or value range of a parameter in the 
case of normal behavior. 
Discrepancy: this indicates abnormal behavior of the system be- 
ing monitored; sometimes there is an ordered list of the potential 
discrepancies, e.g., small - deviation, medium -deviation, 
and so on. 

Input Historical data about the system being monitored, usually gath- 
ered during prior monitoring cycles. 

Output The discrepancy found (if any). 
Features The crucial distinction between monitoring and diagnosis lies in 

the nature of the output. Monitoring "just" observes a discrep-
ancy, without any exploration of the cause or fault underlying the 
deviant system behavior. However, in many domains monitoring 
and diagnosis are tightly coupled tasks: when monitoring leads to 
a discrepancy, a diagnosis task is started, using the monitoring in-
formation as input. A main feature of monitoring is the dynamic 
nature of the system being analyzed. This is the main distinguish-
ing feature when compared to assessment. 

Default method Figure 6.11 shows the default method that is applicable to most simple 
monitoring tasks. The method is event-driven: the method becomes active every time new 
data come in. This is modelled with the use of the transfer function receive in which 
an external agent (a human user or another system) has the initiative (see Chapter 5 and 
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TASK monitoring; 
ROLES: 

INPUT: 
historical-data: "data frog- previous monitoring cycles"; 

OUTPUT: 
discrepancy: 'indication of deviant system behavior"; 

END TASK monitoring; 

TASK-METHOD data-driven-monitoring; 
REALIZES: monitoring; 
DECOMPOSITION: 

INFERENCES: 
select, specify, compare, classify; 

TRANSFER-FUNCTIONS: receive; 
ROLES: 

INTERMEDIATE: 
finding: 'some observed data about the system"; 
parameter: 'variable to check for deviant behavior"; 
norm: "expected normal value of the parameter"; 
difference: "an indication of the observed norm deviation"; 

CONTROL-STRUCTURE: 
receive(new-finding); 
select(new-finding -> parameter); 
specify(parameter -> norm); 
compare(norm + finding -> difference); 
classify(difference + historical-data -› discrepancy); 
historical-data := finding ADD historical-data; 

END TASK-METHOD data-driven-monitoring; 

Figure 6.11 
Method specification for the data-driven method for monitoring. A data-driven method typically starts with a 
"receive" transfer function, meaning that system control is dependent on the reception of external data. For this 
reason, the role "new-finding" is not listed as a task input: it is an input during the task. 

Chapter 9 for more details on transfer functions). Once a new finding has come in, four 
inferences are defined for processing the data: 

1. Select A system parameter is selected that can tell us something about the new data. 
2. Specify A norm value is specified for the parameter. Typically, a monitoring system 

will have as domain knowledge a system model, consisting of a number of parameters. 
For each parameter knowledge needs to be provided about the normal parameter values 
in different system contexts. For example, if we have a system for monitoring intensive 
care for premature infants, heart rate could be a parameter, and the normal value would 
typically be a value above 100 beats/minute. 

3. Compare A comparison is made of the new finding with the norm, leading to a 
difference description (e.g., 5 beats/minute below the norm). 

t} 
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Figure 6.12 
Inference structure of the task template for monitoring. 

4. Classify A classification is performed of the difference into a discrepancy class, e.g., 
minor or major disturbance. Often, data from previous monitoring cycles are used in 
this inference. For example, a difference of 5 beats/minute in a newborn infant could 
be classified as a minor disturbance if the value is the same as in previous cycles; a 
sudden decrease in time would however be characterized as a major disturbance. 

Figure 6.12 shows the corresponding inference structure. 

Method variations In some domains the method model-driven monitoring is more ap-
propriate. Model-driven monitoring describes a monitoring approach where the system has 
the initiative. This type of monitoring is typically executed at regular points in time, e.g., 
each month the progress of a software project is measured. The system actively acquires 
new data for some selected set of parameters (through an obtain transfer function) and then 
checks whether the observed values differ from the expected ones. 

In some cases classification is quite complex, and is best treated as a subtask with 
internal structure. The classification method discussed earlier might be of help then. 
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Figure 6.13 
Terminology in synthetic tasks. The examples are taken from a PC configuration domain. 

6.7 Synthesis 

Although "synthesis" is in essence just a common denominator for a group of task types, 
some of which are described further on, we found it useful to include a general synthesis 
model, because it turns out that in many synthetic tasks a similar reasoning pattern appears. 
The model sketched here should be viewed as an "ideal" model, which often cannot be used 
in precisely this form, or should be extended in various ways. The terminology used is by 
definition very abstract. 

General characterization 
Goal Given a set of requirements construct a system structure that ful- 

fills these requirements 
Terminology System structure: the system being synthesized, e.g., a physical 

artifact, a plan, a schedule, or a set of assignments. 
Constraint, preference, requirement These three terms appear 
in most synthesis domains. In the literature, different definitions 
are given of these terms. We propose to use the terminology de-
picted in Figure 6.13. The main property of requirements in gen-
eral is that they are external to the system. When the requirements 
are "operationalized" for use in an application it usually turns out 
that there are two types of requirements: "hard" requirements and 
"soft" requirements. Typically, hard requirements have the same 
role and representation as the "constraints" which dictate inherent 
limitations in system structure and are part of the domain knowl-
edge. Therefore, hard requirements are sometimes called "exter- 
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nal constraints.," but this terminology easily leads to confusion. 
For soft requirements and preferences the same story holds: soft 
requirements and preferences share many features. This type of 
knowledge also has an associated preference category (indicating 
the relative importance of the preference), the representation of 
which differs per application domain. 

Input A set of requirements. 
Output A (list of) system-structure description(s). 

Features This synthesis method can be used in synthetic application tasks 
in which the amount of possible system structures is limited. For 
example, in some therapy-planning tasks the design space is lim-
ited. This method therefore actually works well for this class of 
planning tasks. The system structure is in this case equivalent to 
a plan. 

Default method Figure 6.14 shows the specification of this idealized method for syn-
thetic tasks. It consists of four steps: 

1. Operationalize requirements This inference analyzes the requirements and trans-
forms these into an operational representation. The output is usually two different sets 
of requirements: hard and soft requirements (see Figure 6.13). 

2. Generate possible system structures In this step all possible system structures are 
generated, based on the static knowledge the system has about potential system struc-
tures. The requirements provide us with the general goal, e.g., "design a car," "config-
ure a mixer," or "plan a therapy for an apple pest." Because design spaces can be very 
large or even infinite, this step may not be feasible in many design applications. You 
will see that more specific synthetic methods, such as the method for configuration de-
sign, use "smart" methods to limit the number of designs generated. There still remain 
a number of simple synthetic tasks in which the space of possible designs is limited to a 
manageable number. Note that this "manageable number" goes up with the increasing 
power of computer systems. 

3. Select valid system structures In this step the constraints and hard requirements are 
applied to the possible system structures in order to filter out valid system structures. 
The constraints are usually based on physical laws or empirical design knowledge ("the 
minimum strength of cable X should be ..."). In some cases a subset of the constraints is 
included in the generate function, with the goal of reducing the number of candidates. 

4. Sort systems in preference order Often, the space of valid designs is still very large. 
To reduce this set we need to apply preference criteria. Typically, we have two types 
of preference-related knowledge: 

a. The actual preferences, e.g., that the system should be as cheap as possible. In our 
society this is often an important, if not the only preference criterion. 
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TASK synthesis; 
ROLES: 

INPUT: requirements: "the requirements that need to be 
fulfilled by the artifact': 

OUTPUT: system-structure-list: "partially ordered list 
of preferred system structures"; 

END TASK synthesis; 

TASK-METHOD idealized-synthesis-method; 
REALIZES: 

synthesis; 
DECOMPOSITION: 

INFERENCES: 
operationalize, generate, select-subset, sort; 

ROLES: 
INTERMEDIATE: 
hard-requirements: "requirements that need to be met"; 
soft-requirements: "requirements that act as preferences"; 
possible-system-structures: "all possible system structures"; 
valid-system-structures: 'all system structures that are 

consistent with the constraints"; 
CONTROL-STRUCTURE: 

operationalize(requirements 
-> hard-requirements + soft-requirements); 

generate(requirements 
-> possible-system-structures); 

select-subset(possible-system-structures + hard-requirements 
-> valid-system-structures); 

sort(valid-system-structures + soft-requirements 
-> system-structure-list); 

END TASK-METHOD idealized-synthesis-method; 

Figure 6.14 
Specification of an idealized method for synthetic tasks .  

b. The relative importance of the preferences. Preferences are often rated according 
to some preference scale. 

If there is a strict ordering in the set of preferences, this step is not very difficult. 
However, preference order is often tangled and no clear preference order exists. In this 
case, some balancing function needs to be introduced to decide about the ordering. 

Figure 6.15 shows the corresponding inference structure. We do not describe this 
method in more detail. As you will see, the methods described in the rest of this chapter 
are in fact variations and refinements of this general method. 
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Figure 6.15 
Inference structure of the "ideal" method for synthesis tasks. 

6.8 Configuration Design 

General characterization 
Goal Given a set of predefined components, find an assembly of com- 

ponents that satisfies the requirements and obeys the constraints. 
Typical example Configuration of an elevator. Configuration of a computer system. 

Terminology Component: a part of the assembly, e.g., the car of an elevator, 
the hard disk of a computer. 
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Parameter: a characteristic of either a component (e.g., the stor-
age capacity of a hard disk) or of an assembly of components 
(e.g., the total price of a computer system). 
Constraint: defines a restriction on the choice of a certain com-
ponent (e.g., "CPU board x can hold no more than y Mb internal 
memory") or the value of a certain parameter ("the maximum load 
of the hoist cable is z"). 
Preference: allows the choice of a particular design in a space of 
valid designs. Design problems are usually open-ended and have 
many "correct" solutions. Preferences are used to indicate the 
most desired design. For example, minimizing price is an often 
encountered preference. Preferences can be ordered on an ordinal 
scale. 
Requirement: needs and desires of the future users of the system 
to be configured, e.g., the total price, the speed. Requirements are 
typically translated into either constraints ("hard requirements") 
or preferences ("soft requirements"). 

Input A set of requirements. 
Output An assembly consisting of components and instantiated parame- 

ter values. 
Features Configuration design is a form of design that is well suited to 

automation. However, computationally the task is usually much 
more demanding than analysis tasks. 

Default method A vast bulk of literature exists on configuration-design methods. We 
have selected a variation of the propose-critique-modify class of methods described by 
Chandrasekaran (1990). The conceptual method specification is shown in Figure 6.16. 
The basic structure of the method is: 

1. Propose a design extension. 
2. Verify the current design; if the extended design is OK, then continue with step 1, else 

go to step 3. 
3. Critique the current design and generate an ordered list of actions to revise the current 

design. 
4. Select an action and modify the design accordingly until the verify function succeeds. 
5. Return to step 1. If no further extensions are available, report the configuration found. 

We discuss each of the functions mentioned in Figure 6.16 in some detail. 

• Operationalize requirements The needs and desires of the user have to be translated 
into operational constraints and preferences that the method can work on. For example, 
the "soft" requirement fast system is translated into the preference "maximize the 

!4; 
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TASK configuration-design; 
ROLES: 

INPUT: requirements: "requirements for the design"; 
OUTPUT: design: "the resulting design"; 

END TASK configuration-design; 

TASK-METHOD propose-and-revise; 
REALIZES: configuration-design; 
DECOMPOSITION: 

INFERENCES: operationalize, specify, propose, verify, critique, 
select, modify; 

ROLES: 
INTERMEDIATE: 
soft-requirements: "requirements to be used as preferences"; 
hard-requirements: "requirements that are hard constraints"; 
skeletal-design: "set of design elements"; 
extension: "a single new value for a design element"; 
violation: "constraint violated by the current design"; 
truth-value: "boolean indicating result of the verification"; 
action-list: "ordered list of possible repair (fix) actions"; 
action: "a single repair action"; 

CONTROL-STRUCTURE: 

operationalize(requirements -> hard-requirements 
+ soft-requirements); 

specify(requirements -> skeletal-design); 
WHILE NEW-SOLUTION propose(skeletal-design + design 

+ soft-requirements -> extension) DO 
design :. extension ADD design; 
verify(design + hard-requirements 

-> truth-value + violation); 
IF truth-value == false 
THEN 

critique(violation + design -> action-list); 
REPEAT 

select(action-list -> action); 
modify(design + action -> design); 
verify(design + hard-requirements 

-> truth-value + violation); 
UNTIL truth-value == true; 
END REPEAT 

END IF 
END WHILE 

END TASK-METHOD propose-and-revise; 

Figure 6.16 
Propose-and-revise method for configuration design. 
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parameter "speed" of the component "processor." This operationalization is by no 
means always trivial, and extensive knowledge elicitation may be required. 

• Specify skeletal design  A skeletal design is a predefined format for the design: 
which typical collection of components should the solution contain? In many sim-
ple configuration-design problems there is just one fixed basic artifact structure with 
some optional components. Configuration of a personal computer system is an exam-
ple of this. In this case, this function is simply a look-up of the default skeletal design. 
In more complex applications, several skeletal designs exist, one of which needs to be 
selected. 

• Propose design extension This function is typically a task by itself with at least two 
alternative inferences for proposing a design extension: 

1. Compute a design extension, given the component choices in the current design. 
Parameter values are usually logically dependent on the selected component type. 
For example, a certain processor has a certain price and speed. For computed val-
ues, it is useful to keep a record of the values this computation depends on. This 
can be used in the modification function later on. 

2. Prefer a design extension by using preferences in the knowledge base and user 
preferences to select a component or parameter value in the skeletal design that is 
not yet instantiated. If an ordinal scale of preferences exists use this in the selection. 
Again, it is useful to keep a record of the preferences used to select a value for a 
component. 

The straightforward approach is to try to find a computed extension first, before the 
preference inference is invoked. 

• Verify current configuration Check with the help of the internal constraints and 
those supplied by the user whether the current configuration is internally consistent. If 
the verification fails, produce the violated constraint as an additional output. 

• Critique the current design A simple but effective form of critiquing is to include 
domain knowledge that associates a constraint with "fixes": actions that can be under-
taken to modify the design such that the violation disappears. For example, a violation 
of the constraint "minimum storage capacity" can be fixed with the action "upgrade 
hard disk." Such fixes typically suggest an ordered list of possible actions. In more 
complex cases, the fix can involve updates of more than one design value. As a general 
rule, only design elements for which a value has been "preferred" can be subject to 
fixing. 

• Select an action This is usually a simple selection of the first untried element of the 
action list generated by the critique function. 

• Modify the configuration This function actually applies the fix action to the de-
sign. The function also removes all components for which the value depended on the 
changed element, and invokes the inference compute to recompute new values. 
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Figure 6.17 
Inference structure for the propose-and-revise method. 

Figure 6.17 shows the inference structure for the default configuration-design method. 
Some functions are likely to turn out as complex tasks in an actual application. 

Method variations Two major variations have to be considered: 

1. Perform verification plus revision only when a value has been proposed for all design 
elements. This change requires in fact only a simple adjustment of the control structure 
of the method, but can have a large impact on the competence of the method. Consult 
Motta et al. (1996) for a detailed discussion of this issue. 

2. Avoid the use of fix knowledge. Fixes can be viewed as search heuristics to guide the 
potentially extensive space of alternative designs once a constraint is violated. How-
ever, it could turn out that fixes are not or only fragmentary available in the applica-
tion. In that case, the knowledge engineer will have to fall back on a technique such 
as chronological backtracking to realize the revision process. This solution is usually 
computationally much more demanding. 
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 design element 

1+ fix fix action constraint 

Figure 6.18 
Typical domain knowledge types in configuration design through propose-and-revise. 

Typical domain schema Figure 6.18 shows the main domain knowledge types involved 
in configuration design using the default method. The central concept is design element. 
This is a supertype of component and parameter. Parameters are linked to a certain 
component. Components themselves also act as a kind as a kind of parameter: their "value" 
is the "model" selected for the component. For example, for a hard-disk component we 
can select several models, each with its own parameter values (for capacity, access type, 
price, etc.). The propose-and-revise method in fact treats components in a similar manner 
to parameters. Components can be organized in an aggregate component structure through 
an aggregation relation (see the lower left of Figure 6.18). 

The domain schema contains three rule types. The rule type calculation-expression 
describes knowledge pieces that represent computational dependencies between design 
elements. An example is the weight parameter of an aggregate component which can 
be derived from the combined weights of it subcomponents. The rule type constraint-
expression describes constraints on design elements. The antecedent consists of one or 
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more logical expressions about design elements. If the antecedent evaluates to true, the 
construct is assumed to be true. The conclusion of the rule is an expression about some 
constraint label, e.g., that the constraint "minimum-storage-capacity" has been exceeded. 
Finally, the rule type preference-expression defines a dependency between a design ele-
ment and a preference. An example would be the preference "Intel inside" which requires 
as an antecedent that the parameter maker of the component processor holds the value 
"Intel." Preferences are associated with a preference rating, indicating the relative impor-
tance of the preferences. The exact representation of the preference rating is application-
specific. 

A fix is modelled in the schema as a complex relation. It links a constraint to a set of 
fix-actions that can be applied to the design in case the constraint is violated. A fix-action 
is a relation class (see Chapter 5) and thus itself also a relation, namely between an action 
(e.g., upgrade, downgrade, increase) and a design element. An instance of a fix in a 
computer-configuration domain could look like this: 

fix( constraint( minimum-required-storage-capacity ) , 
fix-action( action( upgrade ), design-element( hard-disk ))) 

In words: if the constraint minimum - required - storage -capacity is violated, a 
possible fix is to carry out the fix action upgrade hard - disk, where upgrade is the 
action and hard -disk the design element to which the action should be applied. 

6.9 Assignment 

General characterization 
Goal Create a relation between two groups of objects, subjects and re- 

sources, that meets the requirements and obeys the constraints. 
Typical example Assignment of offices to employees. Assignment of airplanes to 

gates. 
Terminology Subject: An object (employee, airplane) that needs to get a cer- 

tain resource. 
Resource: An object (office, gate) that can used for a certain pur-
pose by a subject. 
Subject-group: A group of subject objects, usually constructed 
for the purpose of joint subject assignment to a resource. 
Allocation: A relation between a subject and a resource. 

Input Two object sets, one set consisting of subjects and the other set 
consisting of resources available for assignment. Possible addi-
tional inputs: existing assignments, component-specific require-
ments. 

Output A set of allocations of subject-resource allocations. 



156 Chapter 6 

Features Assignment is a relatively simple synthetic task. One can see it as 
a variation of configuration design, the main difference being the 
underlying system structure which in assignment is not a physical 
artifact. 

Default method The template defined in this section covers only a simple method for 
assignment which has proved useful. If this method is not appropriate, e.g., because exten-
sive backtracking is required, it is best to use a configuration design method instead. The 
method specification is shown in Figure 6.19. The method contains three inferences: 

1. Select subset of subjects This inference selects a subset of the subjects to be as-
signed based on domain-specific priority criteria. For example, in an office-assignment 
domain the management staff could be assigned first. At Schiphol airport, KLM air-
planes may have priority. The knowledge that is used here can range from formal 
regulations to heuristics used to constrain the search. 

2. Group subjects This inference generates a group of subjects that can be assigned 
jointly to a single resource. In many assignment domains the resources are not all for 
single-subject use. For example, offices may host more than one employee. 
Grouping typically brings a special kind of domain knowledge into play related to 
constraints and preferences regarding subject-subject interaction. For example, placing 
a smoker with a nonsmoking person is nowadays not considered acceptable. If no 
grouping is needed, this step is best viewed as a no-op, in which a single subject is 
(randomly) selected and becomes the "subject-group," which in this case would consist 
of just a single element. This inference may actually require complex reasoning. It may 
be useful to view grouping as a task and decompose it further to describe the internal 
process in more detail. An effective method is the following: 

a. First, generate all the possible groupings. 
b. Then apply successive "select-subset" steps in which constraints and preferences 

are used in a specific order to filter out unwanted or less-preferred groupings. 

This is not a method you will see an expert apply, but a computer can handle it with-
out any problem! The advantage is that you are sure of getting the optimal solution, 
whereas this remains unsure when you use heuristic expert knowledge for generating 
groupings. This grouping method is in fact an instantiation of the idealized method for 
synthetic tasks in general (presented earlier in this chapter). 

3. Assign In the assign step a resource is selected that fits best with the constraints 
and preferences connected to the subjects involved. The current allocations are often 
an important input, because some assignments may actually depend on where some 
subject is placed (e.g., a secretary needs to be placed close to the person she works 
for). 

Figure 6.20 shows the corresponding inference structure. 

TFTTA-7 • 
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TASK assignment; 
ROLES: 

INPUT: 
subjects: "The subjects that need to get a resource"; 
resources: "The resources that can be assigned"; 

OUTPUT: 
allocations: "Set of subject-resource assignments"; 

END TASK assignment; 

TASK-METHOD assignment-method; 
REALIZES: assignment; 
DECOMPOSITION: 

INFERENCES: select-sub-set, group, assign; 
ROLES: 

INTERMEDIATE: 
subject-set: "Subset of subjects with the same 
assignment priority"; 

subject-group: "Set of subjects that can jointly be assigned 
to the same resource. It may consist of a single subject."; 

resource: 'A resource that gets assigned"; 
current-allocations: "Current subject-resource assignments"; 

CONTROL-STRUCTURE: 
WHILE NOT EMPTY subjects DO 

select-subset(subjects -> subject-set); 
WHILE NOT EMPTY subject-set DO 

group(subject-set -> subject-group); 
assign(subject-group + resources 

+ current-allocations -> resource); 
current-allocations :, 

< subject-group, resource > ADD current-allocations; 
subject-set := subject-set DELETE subject-group; 
resources := resources DELETE resource; 

END WHILE 
subjects := subjects DELETE subject-set; 

END WHILE 
END TASK -METHOD assignment-method; 

Figure 6.19 
Default method for assignment without backtracking. 

Method variations As we noted earlier, the method sketched above cannot handle back-
tracking over allocations already made. If this is required for the application task, you 
should probably use the configuration-design method described in this chapter. The fol-
lowing variations of the assignment method occur relatively frequent: 

• Existing allocations In some applications, there may be existing allocations at the 
point where the task starts (e.g., assignment of airplanes to gates). In that case you may 
need this as an additional input for all three subfunctions. 
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Figure 6.20 
Inference structure for the assignment method. 

• Subject-specific constraints and preferences The default method specification as-
sumes that the constraints and preferences are all of a static nature and can be specified 
in advance in the domain knowledge. A constraint in the knowledge base could be that 
smokers and nonsmokers should not be grouped together. With data about the subjects 
the system can apply this constraint. However, sometimes a subject has a specific pref-
erence at a specific point in time. For example, an airplane wants to have a gate close 
to another gate because it is late and passengers need to catch a connecting flight. In 
that case, we need an additional inference that takes in the case-specific requirements 
and operationalizes these into constraints and preferences (see the configuration-design 
method for a similar construction). 
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6.10 Planning 

General characterization 
Goal Given some goal description, generate a plan consisting of a (par- 

tially) ordered set of actions or activities that meet the goal. 
Typical example Planning of therapeutic actions for treating a disease. 

Terminology Goal: the goal that one intends to achieve through carrying out 
the plan, e.g., cure an acute bacterial infection. 
Action: a basic plan element, e.g., "give antibiotic type A three 
times per day for a period of one week in a dosage of 500 mg." 
Plan: a partially ordered collection of actions, e.g., the adminis-
tration of two antibiotics in parallel. 

Input The goal to be achieved by the plan plus additional requirements. 
Output The action plan aimed at achieving the goal. 

Features Be aware that in many domains the term "planning" is used in a 
different sense. The term "planning" may map to "scheduling" 
in the terminology of this chapter: allocation of activities to time 
slots. In other domains the term "planning" has a wider mean-
ing and covers both the task types "planning" and "scheduling." 
These two types are seen frequently in combination, as schedul-
ing takes the output of planning as input. 

Default method We have not included a separate template for planning. Instead, you 
can use two previous templates to model a planning task, namely the synthesis template or 
the configuration-design template. We advise the following modelling strategy: 

• If the space of possible plans is not too large, use the synthesis template. The design 
space is determined by the set of basic plan actions plus the ways in which these el-
ements can be combined. In some therapy-planning domains both the action set and 
the combinations are limited, so that the synthesis template can be used. The advan-
tage of the synthesis template is that it will always find the "best" plan. For applying 
the template to planning you have to add a few simple refinements to the template. 
First, you have to separate the goal role from the other requirements, and use it as input 
for the generate step. Also, the role terminology can be made specific for planning. 
Figure 6.21 shows the inference structure instantiated for the planning task. 

• If the space of possible plans is large, we advise you to use the method described 
for configuration design. This propose-and-revise method requires using several types 
of additional knowledge to prune the search space. The method is easy to adapt to 
planning. 

Both methods assume, as with configuration design, that the set of basic plan compo-
nents (the actions) is fixed. If this assumption is not true, automation of the task is likely 
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Figure 6.21 
Inference structure for planning based on the synthesis template. 

to be infeasible with current techniques. Also, if the grain size of the plan action is small, 
the methods described may work poorly. 

6.11 Scheduling 

General characterization 
Goal Given a set of predefined jobs, each of which consists of tem- 

porally sequenced activities called units, assign all the units to 
resources, while satisfying constraints. 

-741-11-11PMEMilnipr . 
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Typical example Production scheduling in plant floors. 
Terminology Job: a temporal sequence of units. 

Unit: an activity to be performed at a resource. 
Resource: an agent that may satisfy a demand of a unit. 
Constraint: a restrictive condition on the mapping of units on 
resources. 

Input A set of jobs consisting of units. 
Output Mapping of units on resources, in which all start and end times of 

units are determined. 
Features Scheduling problems take activities whose temporal sequences 

are predefined as input, while the creation of such temporal se-
quences of activities is a goal of planning problems. Furthermore, 
a resource in scheduling problems provides a time range, in which 
units can be occupied to satisfy their demands. It is a typical fea-
ture of scheduling problems that units are allocated on a time axis 
of a resource. In assignment problems, two parties of entities 
are considered to establish mappings between members of each 
party. However, the assignments are not necessarily established 
on a time axis as in scheduling problems, but may be done on a 
spatial region as in a room assignment problem. 

Reference This description of the scheduling template is, with permission, 
taken from Hori (1998) 

Default method The scheduling method assigns every unit to a resource, fixing the start 
and end times of each unit. The method specification is given in Figure 6.22. After the 
creation of an initial schedule, several inferences are called iteratively, in order to select 
a candidate unit, select a target resource, assign the unit to the resource, evaluate a cur-
rent schedule, and modify the schedule. The following inferences are included in the 
method: 

• Specify an initial schedule A schedule is a place holder of input entities, and also 
a skeletal structure of the output. An initial schedule usually does not contain yet any 
assignments between units and resources. 

• Select a candidate unit to be assigned This inference picks up a single unit as a 
candidate for assignment. A unit can be selected with reference to its temporal relation 
to other units. For example, it is possible to select a unit with the latest end time in 
order to complete jobs as closely as possible to due dates, or to select a unit with the 
earliest start time to release available jobs as early as possible. 

• Select a target resource for the candidate unit This inference picks up a target 
resource for a selected unit. A typical condition to be considered here is a resource type 
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TASK scheduling; 
ROLES: 

INPUT: jobs: "activities that need to be scheduled"; 
OUTPUT: schedule: "activities assigned to time slots"; 

END TASK scheduling; 

TASK-METHOD temporal-dispatching; 
REALIZES: scheduling; 
DECOMPOSITION: 

INFERENCES: specify, select, select, assign, modify, verify; 
ROLES: 

INTERMEDIATE: 
candidate-unit: "activity selected for next assignment"; 
target-resource: "resource selected for next assignment"; 
truth-value: "boolean indicating result of verification"; 

CONTROL-STRUCTURE: 
specify(jobs -> schedule); 
WHILE HAS-SOLUTION select(schedule -> candidate-unit) DO 

select(candidate-unit + schedule -> target-resource); 
assign(candidate-unit + target-resource -> schedule); 
verify(schedule -> truth-value); 
IF truth-value == false 
THEN modify(schedule -> schedule); 

END IF 
END WHILE 

END TASK-METHOD temporal-dispatching; 

Figure 6.22 
Default method for scheduling. 

constraint, which excludes a resource whose type is not equivalent to a resource type 
designated by the unit. Since a load of each resource can be calculated by accumulating 
that of all the units assigned to the resource, it is possible to take account of load balance 
of alternative resources by selecting a resource with minimum load. 

• Assign the unit to the target resource This function establishes an assignment of 
a candidate unit to a target resource. Two types of constraints are considered here: a 
resource capacity constraint and a unit precedence constraint. The capacity constraint 
is to prevent a resource from being allocated to more units than it can process at one 
time. The precedence constraint restricts the process routing to follow a predefined 
temporal sequence. 

• Verify the current schedule This function checks whether the current schedule satis-
fies the given constraints or evaluation criteria. Typical criteria in scheduling problems 
are the number of jobs processed within a certain time interval (i.e., throughput), and 
the fraction of time in which a resource is active (i.e., resource utilization). 
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Figure 6.23 
Inference structure for the default scheduling method. 

• Modify the current schedule This function adjusts the position of a unit. This mod-
ification may require further adjustment for either units assigned to the same resource, 
or units that are temporally sequenced under a job. 

Figure 6.23 shows the corresponding inference structure. 

Method variations Two types of scheduling methods are well known in the literature: 
constructive methods and repair methods (Zweben et al. 1993). Both methods are often 
employed complementarily in practical situations. The constructive scheduling methods 
incrementally extend valid, partial schedules until a complete schedule is created or until 
backtracking is required. The repair methods begin with a complete, but possibly flawed, 
set of assignments and then iteratively modify the assignments. 

In the specification of Figure 6.22, the method primarily realizes a constructive 
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Figure 6.24 
Typical domain schema for scheduling problems. 
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job 

release-date: time 
due-date: time 

method, and a repair method is interleaved at the end of the main iteration loop. However, 
it is possible to put the repair method outside the main loop. Scheduling under unreliable 
environments often requires dynamic repairs in response to variable conditions. In such 
cases, repair methods play a more important role, and are devoted to local repairs rather 
than (re)scheduling from scratch. 

It must be noted here that the inference structure in Figure 6.23 captures a high-level 
inference flow regardless of ways of composing the constructive and repair methods. Some 
other variations in scheduling methods are found in Hori et al. (1995) with examples of 
components elicited from existing scheduling systems. A broader collection of scheduling 
problems and methods is included in Zweben and Fox (1994). 

Typical domain schema Figure 6.24 shows a typical domain schema for scheduling 
problems. An essential feature of scheduling problems lies in one-to-many associations 
between a resource and units, which is established dynamically by a scheduling method. 
The resource capacity constraint mentioned earlier is a condition imposed on this relation. 
A job aggregates several units that are sequenced temporally. This aggregate relation is 
fixed in advance in a problem specification, and must be maintained as a unit precedence 
constraint. Resources and jobs are held by a single entity called a schedule. The schedule 
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Task-type combination Description 
Monitoring + diagnosis This is a natural task combination, because the output of one can act as 

input for the other. Many technical systems now have built-in 
monitoring-diagnosis functionality. 

Monitoring + assessment In applications where there is no possibility for "real" diagnosis (due 
to unavailability of experts, system data, or adequate causal models), 
monitoring is typically followed by an assessment in which a decision 
is taken about the course of action (e.g., ask for help from experts). 

Diagnosis + planning This is also a logical combination. The result of diagnosis can be used 
as a goal for planning of corrective actions. In technical domains this 
task combination is often called "troubleshooting." 

Planning + scheduling Planning delivers a partially ordered set of actions/activities. This 
output can be used by scheduling to generate an allocation of activities 
to time slots and resources. 

Assessment + planning An example of this combination is "rescue planning," where there is 
usually first some kind of assessment ("should something be done, and 
if so what type of action?") followed by planning of the rescue action. 

Classification + planning This combination is frequently seen in a command & control situation, 
e.g., in military domains. An incoming signal is interpreted and 
classified (e.g., enemy or friend), potentially followed by planning 
(taking countermeasures). 

Table 6.3 
Typical combinations of task types in application tasks. 

entity is exploited by inference functions such as select and modify in the default scheduling 
method. 

The schema in Figure 6.24 captures an essential core of domain knowledge for 
scheduling problems. It is possible for the schema to be further elaborated taking account 
structural regularities in a concrete application domain. A domain schema given in Hon 
and Yoshida (1998) can be regarded as an elaboration of this schema to be exploited for 
scheduling problems in plant floors. 

6.12 Task-Type Combinations 

In many applications, the application task consists of a combination of knowledge-
intensive task types. In fact, there are a number of typical task-type combinations that 
are seen frequently together. For example, monitoring and diagnosis are often seen in 
combination. The output of monitoring is used as input for the diagnosis task. Table 6.3 
lists a number of typical task-type combinations. Of course, other combinations are possi-
ble as well. The table lists the basic combinations. Combinations of combinations are also 
possible, e.g., monitoring, diagnosis, and planning. 
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6.13 Relation to Task and Organization Models 

Although the task types discussed in this chapter occur in almost any knowledge-intensive 
application, there is not a simple one-to-one mapping from application task to task type. 
The application task is what we call a "real-life" task: a task carried out in a real-world 
setting. The task types are best seen as generalizations of recurring patterns in knowledge-
intensive tasks. In addition to the task-type combinations we saw in the previous section, 
one should also be aware that not all elements of an application task need to be knowledge-
intensive. 

Thus, the mapping from application task to task types can be quite complex. In 
knowledge-engineering practice the task types and task combinations act as background 
knowledge for the task decomposition in the organization and task models. Usually the 
aim in the latter models is to decompose tasks down to the level of the task types discussed 
in this chapter. The knowledge model is thus in fact a continuation of the task decomposi-
tion in the context models. 

6.14 Bibliographical Notes and Further Reading 

Some more advanced topics concerning task templates are discussed in Chapter 13, such 
as the notion of problem-solving methods and the possibility of having multiple methods 
for a single task. 

In recent 0-0 work on reusable objects some notions have come up that resemble 
the task templates described in this chapter. In particular, the "strategy pattern" described 
by Gamma et al. (1995) is based on a similar idea. The main difference is that the task 
scope for CommonKADS is much smaller, and therefore the templates can be much more 
specific. 

Task typologies for use in knowledge engineering were first proposed by Hayes-Roth 
et al. (1983) and later, in adapted form, by Clancey (1985). Breuker and Van de Velde 
(1994) use another variation of the task hierarchy and describe a large set of detailed task 
templates. Puppe (1990) uses a different task-type hierarchy than most others, but the terms 
he uses can easily be mapped back. His template models are somewhat computationally 
oriented, but can still prove to be a useful source of ideas. Stefik (1993) limits the typology 
to classification, configuration design, and diagnosis, but his description is extensive and 
covers both conceptual (analysis) as well as computational (design) aspects. The book by 
Benjamins (1993) contains a large and detailed collection of diagnosis models, and proves 
to be of particular use when constructing more complex diagnosis models. The diagnosis 
template in this chapter is based on one of the simpler models in his catalog. 

Task templates are sometimes called interpretation models, because they can guide the 
interpretation of verbal data obtained from the expert (see the protocol-analysis technique 
in Chapter 8). The term is used in the first KADS catalog which may be found in a technical 
report of the first KADS project (Breuker et al. 1987). 
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7 
Knowledge Model Construction 

Key points of this chapter: 

• The process of knowledge-model construction can be decomposed into a 
number of stages in which certain activities need to be carried out. For 
each activity a number of techniques exist. Guidelines help the knowledge 
engineer in deciding how to carry out the activities. 

• The three main stages are knowledge identification, knowledge specifica-
tion, and knowledge refinement. 

• This chapter prescribes a particular approach with some variations, but the 
knowledge engineer should be aware of the fact that modelling is a construc-
tive activity, and that there exists no single correct solution nor one optimal 
path to it. 

7.1 Introduction 

So far, we have mainly concentrated on the contents of the knowledge model. As in any 
modelling enterprise, inexperienced knowledge modelers also want to know how to un-
dertake the process of model construction. This is a difficult area, because the modelling 
process itself is a constructive problem-solving activity for which no single "good" solu-
tion exists. The best any modelling methodology can do is provide a number of guidelines 
that have proved to have worked well in practice. 

This chapter presents such a set of guidelines for knowledge-model construction. The 
guidelines are organized in a process model that distinguishes a number of stages and 
prescribes a set of ordered activities that need to be carried out. Each activity is carried 
out with the help of one or more techniques and can be supported through a number of 
guidelines. In describing the process model we have tried to be as prescriptive as possible. 
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Where appropriate, we indicate sensible alternatives. However, the reader should bear in 
mind that the modelling process for a particular application may well require deviations 
from the recipe provided. Our goal is a "90%-90%" approach: it should work in 90% of 
the applications for 90% of the knowledge-modelling work. 

As pointed out in previous chapters, we consider knowledge modelling to be a special-
ized form of requirements specification. Partly, knowledge modelling requires specialized 
tools and guidelines, but one should not forget that more general software-engineering 
principles apply here as well. At obvious points we refer to those, but these references will 
not be extensive. 

This chapter does not cover the elicitation techniques often used in the knowledge 
analysis and modelling process. An overview of useful elicitation techniques can be found 
in Chapter 8. 

7.2 Stages in Knowledge-Model Construction 

We distinguish three stages in the process of knowledge-model construction: 

1. Knowledge identification  Information sources that are useful for knowledge mod-
elling are identified. This is really a preparation phase for the actual knowledge model 
specification. A lexicon or glossary of domain terms is constructed. Existing model com-
ponents such as task templates and domain schemas are surveyed, and components that 
could be reused are made available to the project. Typically, the description of knowledge 
items in the organization model and the characterization of the application task in the task 
model form the starting point for knowledge identification. In fact, if the organization-
model and task-model descriptions are complete and accurate, the identification stage can 
be done in a short period. 
2. Knowledge specification  In the second stage the knowledge engineer constructs a 
specification of the knowledge model. First, a task template is chosen and an initial do-
main schema is constructed, using the list of reusable model components identified in the 
previous stage Then, the knowledge engineer will have to "fill in the holes" in the knowl-
edge model. As we will see, there are two approaches to complete the knowledge-model 
specification, namely starting with the inference knowledge and then moving to related 
domain and task knowledge, or starting with domain and task knowledge and linking these 
through inferences. The choice of approach depends on the quality and detailedness of 
the chosen task template (if any). In terms of the domain knowledge, the emphasis in this 
stage is on the domain schema, and not so much on the knowledge base(s). In particu-
lar, one should not write down the full set of knowledge instances that belong to a certain 
knowledge base. This can be left for the next stage. 
3. Knowledge refinement  In the final stage, attempts are made to validate the knowl-
edge model as much as possible and to complete the knowledge bases by inserting a more 
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STAGES TYPICAL ACTIVITIES 

- domain familiarization 
knowledge (information sources, glossary, scenarios) 

identification - list potential model components for reuse 
(task- and domain-related components) 

  

- choose task template 
(provides initial task decomposition) 

- construct initial domain conceptualization 
(main domain information types) 

- complete knowledge-model specification 
(knowledge model with partial knowledge bases) 

knowledge 
specification 

  

   

- validate knowledge model 

knowledge (paper simulation, prototype of reasoning system) 

refinement - knowledge-base refinement 
(complete the knowledge bases) 

Figure 7.1 
Overview of the three main stages in knowledge-model construction. The arrows indicate typical but not absolute 
time dependencies. For each stage some activities are listed on the right. 

or less complete set of knowledge instances (e.g., instances of rule types). An important 
technique for validating the initial specification that comes out of the previous stage is to 
construct a simulation of the scenarios gathered during knowledge identification. Such 
a simulation can either be paper-based or involve the construction of a small, dedicated 
prototype. The results of the simulation should give an indication whether the knowledge 
model can generate the problem-solving behavior required. Only if validation delivers 
positive results is it useful to spend time on completing the knowledge bases. 

These three stages can be intertwined. Sometimes, feedback loops are required. For 
example, validation may lead to changes in the knowledge-model specification. Also, 
completion of the knowledge bases may require looking for additional information sources. 
The general rule is: feedback loops occur less frequently if the application problem is well 
understood and similar problems have been tackled successfully in prior projects. We 



170 Chapter 7 

now look at the three stages in more detail. For each stage we indicate typical activities, 
techniques, and guidelines. 

7.3 Knowledge Identification 

7.3.1 Activity Overview 

When we start constructing a knowledge model we assume that a knowledge-intensive 
task has been selected, and that the main knowledge items involved in this task have been 
identified. Usually, the application task has also been classified as being of a certain type, 
e.g., assessment, configuration design (see the task types in Chapter 6). 

The goal of knowledge identification is to survey the knowledge items and prepare 
them in such a way that they can be used for a knowledge-model specification in the second 
stage. This includes carrying out the following two activities: 

• Explore and structure the information sources for the task, as identified in the knowl-
edge item listings. During this process. create a lexicon or glossary of terms for the 
domain. 

• Study the nature of the task in more detail, and check or revise the task type. List all 
potential reusable knowledge-model components for this application, 

7.3.2 Activity 1.1: Domain Familiarization 

The starting point for this activity is the list of knowledge items described in worksheet 
TM-2. One should study this material in some detail. Two factors are of prime importance 
when surveying the material: 

1. Nature of the sources The nature of the information sources determines the type 
of approach that needs to be taken in knowledge modelling. Domains with well-
developed domain theories are usually easier than ill-specified domains with many 
informal and/or diffuse sources. 

2. Diversity of the sources If the information sources are very diverse in nature, with no 
single information source (e.g., a textbook or manual) playing a central role, knowledge 
modelling requires more time. Sources are often conflicting, even if they are of the 
same type. For example, having multiple experts is a considerable risk factor. In the 
context of this book we cannot go into details about the multiexpert situation, but the 
references at the end of this chapter include a number of useful texts. 

Techniques used in this activity are often of a simple nature: text marking in key in-
formation sources such as a manual or a textbook, one or two unstructured interviews to 
get insight into the application domain. The goal of this activity is to get a good insight, 
but still at a global level. More detailed explorations may be carried out in less understood 
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areas, because of their potential risks. The main problem the knowledge engineer is con-
fronted with is to find a balance between learning about the domain without becoming a 
full domain expert. For example, a technical domain in the processing industry concerning 
the diagnosis of a specific piece of equipment may require a large amount of background 
knowledge to understand, and therefore the danger exists that the exploration activity will 
take long. This is in fact the traditional problem with all knowledge-engineering projects. 
One cannot avoid (nor should one want to) becoming a "layman expert" in the field. The 
following guidelines may be helpful in deciding upon the amount of detail required for 
exploring the domain material: 

Guideline 7-1:  TALK TO PEOPLE IN THE ORGANIZATION WHO HAVE TO TALK TO 
EXPERTS BUT ARE NOT EXPERTS THEMSELVES 
Rationale: These "outsiders" have often undergone the same process you are now under-
taking: trying to understand the problem without being able to become a full expert. They 
can often tell you what the key features of the problem-solving process are on which you 
have to focus. 

Guideline 7-2:  AVOID DIVING INTO DETAILED, COMPLICATED THEORIES UNLESS 
THEIR USEFULNESS IS PROVEN 
Rationale: Usually, detailed theories can safely be omitted in the early phases of knowl-
edge modelling. For example, in an elevator configuration domain the expert can tell you 
about detailed mathematical theories concerning cable traction forces, but the knowledge 
engineer typically only needs to know that these formulas exist, and that they act as a 
constraint on the choice of the cable type. 

Guideline 7-3:  CONSTRUCT A FEW TYPICAL SCENARIOS WHICH YOU UNDERSTAND 
AT A GLOBAL LEVEL 
Rationale: Spend some time with a domain expert to collect or construct scenarios, and ask 
nonexperts involved whether they agree with the selection. Try to understand the domain 
knowledge such that you can explain the reasoning of the scenario in superficial terms. 
Scenarios are useful to construct and/or collect for other reasons as well. For example, 
validation activities often make use of predefined scenarios. 

Never spend too much time on this activity. Two person-weeks should be the maxi-
mum, except for some very rare difficult cases. If you are doing more than that, you are 
probably overdoing it. The results achieved at the end of the activity can only partly be 
measured. The tangible results should be: 

• listing of domain knowledge sources, including a short characterization; 
• summaries of selected key texts; 
• description of scenarios developed. 

However, the main intangible result, namely your own understanding of the domain, stays 
the most important one. 
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7.3.3 Activity 1.2: List Potential Model Components 

The goal of this activity is to pave the way for reusing model components that have already 
been developed and used elsewhere. Reuse is an important vehicle for quality assurance. 
This activity studies potential reuse from two angles: 

1. Task dimension A characterization is established of the task type. Typically, such 
a type has already been tentatively assigned in the task model. The aim here is to 
check whether this is still valid using the domain information found in the previous 
step. Based on the selected task type, one starts to build a list of task templates that are 
appropriate for the task. 

2. Domain dimension Establish the type of the domain: is it a technical domain?, Is 
the knowledge mainly heuristic?, and so on. Then, look for standardized descriptions 
of this .  domain or of similar domains. These descriptions can take many forms: field-
specific thesauri such as the Art and Architecture Thesaurus (AAT) for art objects or 
the Medical Subject Headings (MeSH) for medical terminology, "ontology" libraries, 
reference models (e.g., for hospitals), product model libraries (such as the ones using 
the ISO STEP standard). Over the last few years there have been an increasing number 
of research efforts constructing such standardized domain-knowledge descriptions. 

Guidelines for task-type selection Selecting the right task type is important. The guide-
lines below may help you in making the right choice. 

Guideline 7-4:  APPLICATION TASKS ARE OFTEN COMBINATIONS OF TASK TYPES 
Rationale: Be aware of the point made in Chapter 6, that there is hardly ever a one-to-one 
match between application task and a task type. Ideally, these distinctions will already 
have been disclosed in the task model, but it may happen that you only find out during 
knowledge modelling. 

Guideline 7-5:  NAMES GIVEN TO APPLICATION TASKS DO NOT NECESSARILY MAP 
TO GENERIC TASK-TYPE NAMES 
Rationale: This guideline refers to the frequently occurring situation in which the appli-
cation task has already a name that also occurs in the task-type list, e.g., "travel planning " 
These application task labels do not necessarily match with the definition of the task type 
used in this book. The meaning of a term like "planning" varies and our task-type def-
initions are in a sense arbitrary decisions about where to put borderlines between tasks. 
Consult carefully the "features" slot in the general characterization of each task-template 
description to learn about typical confusions with other task types. For example, "diagno-
sis" performed by nonexperts (or by experts who have little data available) is often actually 
a task of the "assessment" type. 
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7.4 Knowledge Specification 

7.4.1 Activity Overview 

The goal of this stage is to get a complete specification of the knowledge model, except the 
contents of the knowledge bases: these typically only contain some example knowledge 
instances. The following activities need to be carried out to build such a specification: 

• choose a task template; 
• construct an initial domain schema; 
• specify the three knowledge categories. 

7.4.2 Activity 2.1: Choose Task Template 

Chapter 6 contains a small set of task templates for a number of task types such as diagnosis 
and assessment. The chapter also gives pointers to other repositories where one can find 
potentially useful task templates. We strongly prefer an approach in which the knowledge 
model is based on an existing template. This is both efficient and gives some assurance 
about the model quality, depending of course on the quality of the task template used and 
the match with the application task at hand. 

Several features of the application task can be important in choosing an appropriate 
task template: 

• the nature of the output (the "solution"): e.g., a fault category, a decision category, a 
plan; 

• the nature of the inputs: what kind of data are available for solving the problem? 
• the nature of the system the task is analyzing, modifying, or constructing: e.g., a 

human-engineered artifact such as a photocopier, a biological system such as a human 
being, or a physical process such as a nuclear power plant; 

• constraints posed by the task environment: e.g., the required certainty of the solution, 
the costs of observations. 

The following guidelines can help the selection of a particular template: 

Guideline 7-6:  PREFER TEMPLATES THAT HAVE BEEN USED MORE THAN ONCE 
Rationale: Empirical evidence is still the best measurement of quality of a task template: 
a model that has proved its use in practice is a good model. 

Guideline 7-7:  IF YOU THINK YOU HAVE FOUND A SUITABLE TEMPLATE, CON-
STRUCT AN "ANNOTATED" INFERENCE STRUCTURE 
Rationale: In an annotated inference structure one adds domain examples to the generic 
figure. This is a good to way to get an impression about what the "fit" is between the 
template and the application domain. An example of an annotated inference structure was 
shown in Figure 5.20. 
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Guideline 7-8:  IF NO TEMPLATE SEEMS TO FIT WITH THE APPLICATION TASK, 
QUESTION THE KNOWLEDGE-INTENSIVE CHARACTER OF THE TASK 
Rationale: If no suitable template can be found, it might be the case that the task is not 
really a "reasoning" task, but a task of another type. An example is the actual assignment 
task in the housing case study in Chapter 10, which is in essence only the application of a 
formula. This situation is not necessarily bad; it simply means that CommonKADS does 
not give you any particular advantages when modelling this task. 

Guideline 7-9:  A BAD TEMPLATE IS BETTER THAN NO TEMPLATE 
Rationale: Although it is strongly recommended that a good template model be used in 
the knowledge-modelling process, this may not always be possible. A task may be new 
or may have exotic characteristics. Experience has shown that it still is useful to select a 
template even if it does not completely fit the task requirements. Such a "bad" template 
can serve as a starting point for the construction of a better one. 

7.4.3 Activity 2.2: Construct Initial Domain Schema 

The goal of this activity is to construct an initial data model of the domain independent of 
the application problem being solved or the task methods chosen. Typically, the domain 
schema of a knowledge-intensive application contains at least two parts: 

1. Domain-specific conceptualizations These are the domain structures that we recog-
nize directly in a domain, and that are likely to be present in any application indepen-
dent of the way in which it is being used. Examples of this type of construct in the 
car-diagnosis domain are battery and fuel-tank. 

2. Method-specific conceptualizations A second set of domain constructs is intro-
duced because these are needed to solve a certain problem in a certain way. Examples 
in the car-diagnosis domain domain are the rule types for the causal network. 

This activity is aimed at describing a first version of the domain-specific conceptual-
izations. These are a good starting point, because these definitions tend to be reasonably 
stable over a development period. If there are existing systems in this domain, in particular 
database systems, use these as points of departure. 

Guideline 7-10:  BASE DOMAIN-SPECIFIC CONCEPTUALIZATIONS ON EXISTING 

DATA MODELS AS MUCH AS POSSIBLE 
Rationale: Even if the information needs for your application are much higher (as they 
often are in knowledge-intensive applications), it is still useful to use at least the same 
terminology and/or a shared set of basic constructs. This will make future cooperation, 
both in terms of exchange between software systems and information exchange between 
developers and/or users, easier. 

Guideline 7-11:  LIMIT USE OF THE CommoNKADS KNOWLEDGE-MODELLING 
LANGUAGE TO CONCEPTS, SUBTYPES AND RELATIONS 

Ell 
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Rationale: The domain-specific part of the domain schema can usually be handled by 
the "standard" part of the CommonKADS language. The notions of concepts, subtypes 
and relations have their counterparts in almost every modern software-engineering ap-
proach, small variations permitting. The description often has a more "data-oriented" than 
"knowledge-oriented" flavor. This activity bears a strong resemblance to building an initial 
object model (without methods!) in object-oriented analysis. 

Constructing the initial domain schema can typically be done in parallel with the 
choice of the task template. In fact, if there needs to be a sequence between the two 
activities, it is still best to proceed as if they are carried out in parallel. This is to ensure 
that the domain-specific part of the domain schema is specified without a particular task 
method in mind 

7.4.4 Activity 2.3: Complete Specification of the Knowledge Model 

There are basically two routes for completing the knowledge model once a task template 
has been chosen and an initial domain schema has been constructed: 

Route 1: Middle-out  Start with the inference knowledge, and complete the task knowl-
edge and the domain knowledge, including the inference-domain role mappings. This 
approach is the preferred one, but requires that the task template chosen provide a task 
decomposition that is detailed enough to act as a good approximation of the inference 
structure. 
Route 2: Middle-in  Start in parallel with decomposing the task through consecutive 
applications of methods, while at the same time refining the domain knowledge to cope 
with the domain-knowledge assumptions posed by the methods. The two ends (i.e., task 
and domain knowledge) meet through the inference-domain mappings. This means we 
have found the inferences (i.e., the lowest level of the functional decomposition). This 
approach takes more time, but is needed if the task template is still too coarse-grained to 
act as an inference structure. 

Figure 7.2 summarizes the two approaches. The middle-out approach can only be 
used if the inference structure of the task template is already at the required level of detail. 
If decomposition is necessary, the process essentially becomes "middle-in." Deciding on 
the suitability of the inference structure is therefore an important decision criterion. The 
following guidelines can help in making this decision: 

Guideline 7-12:  THE INFERENCE STRUCTURE IS DETAILED ENOUGH IF AND ONLY 
IF THE EXPLANATION IT PROVIDES US OF THE REASONING PROCESS IS SUFFICIENTLY 
DETAILED 

Rationale: A key point underlying the inference structure is that it provides us with an 
abstraction mechanism over the details of the reasoning process. An inference is a black 
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tasks 
and 

methods 

Inference 
structure 

role mapping 

middle in 
middle out 

KNOWLEDGE  DOMAIN SCHEMA 
BASE concepts 
DEFINITIONS relations 

rule types 

Expressions in knowledge bases 

Figure 7.2 
Middle-in and middle-out approaches to knowledge-model specification. The middle-out approach is preferred, 
but can only be used if the inference structure of the task template is already at the required level of detail. If 
decomposition is necessary, the process essentially becomes "middle-in". 

box, as far as the specification in the knowledge model is concerned. The idea is that one 
should be able to understand and predict the results of inference execution by just looking 
at its inputs (both dynamic and static) and outputs. 

Guideline 7-13:  THE INFERENCE STRUCTURE IS DETAILED ENOUGH IF IT IS EASY 
TO FIND FOR EACH INFERENCE A SINGLE TYPE OF DOMAIN KNOWLEDGE THAT CAN 
ACT AS A STATIC ROLE FOR THIS INFERENCE 
Rationale: This is not a hard rule, but it often works in practice. The underlying rationale 
is simple: if there are more than two static roles (types of static domain knowledge in the 
knowledge base) involved, then it is often required to specify control over the reasoning 
process. By definition, no internal control can be represented for an inference; we need to 
consider this function as a task that needs to be decomposed. 

• 
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Figure 7.3 
Example of a provisional inference structure. "Generate" and "test" are functions. These functions will ultimately 
either be viewed as tasks (and thus be decomposed through a task method) or be turned into direct inferences in 
the domain knowledge. The knowledge engineer still has to make this decision. 

Although in the final model we "know" what are tasks and what are inferences, this is 
not true at every stage of the specification process. We use the term "function" to denote 
anything that can turn out to be either a task or an inference. We can sketch what we call 
"provisional inference structures" in which functions appear that could turn out to be either 
tasks or inferences. In such provisional figures we use a rounded-box notation to indicate 
functions. Figure 7.3 shows an example of a provisional inference structure. In this figure 
GENERATE and TEST are functions. These functions will ultimately either be viewed as 
tasks (and thus be decomposed through a task method) or be turned into direct inferences 
in the domain knowledge. 

An important technique at this stage is protocol analysis. This technique, which is 
discussed in more detail in the next chapter, usually gives excellent data about the structure 
of the reasoning process: tasks, task control, and inferences. The adequateness of a task 
template can be assessed by using it as an "overlay" of the transcript of an expert protocol. 
The idea is that one should be able to interpret all the reasoning steps made by the expert 
in the protocol in terms of a task or an inference in the template. Because of this usage, 
task templates have also been called "interpretation models." 

If the task template is too coarse-grained and requires further decomposition, a self-
report protocol (in which an expert tries to explain his own reasoning, see the next chapter) 
usually gives clues as to what kind of decompositions are appropriate. Because we require 
of the knowledge model that it can explain its reasoning in expert terms, the self-report 
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protocol is the prime technique for deciding whether the inference structure is detailed 
enough. Also, such protocols can provide you with scenarios for testing the model (see the 
knowledge refinement activities further on). 

Guidelines for specifying task knowledge The following guidelines apply to the speci-
fication of tasks and task methods: 

Guideline 7-14:  WHEN STARTING TO SPECIFY A TASK METHOD, BEGIN WITH THE 

CONTROL STRUCTURE 
Rationale: The control structure is the "heart" of the method: it contains both the decom-
position (in terms of the tasks, inferences, and/or transfer functions mentioned in it), as 
well as the execution control over the decomposition. Once you have the control structure 
right, the rest can more or less be derived from it. 

Guideline 7-15:  WHEN WRITING DOWN THE CONTROL STRUCTURE, DO NOT CON- 

CERN YOURSELF TOO MUCH WITH DETAILS OF WORKING MEMORY REPRESENTATION 
Rationale: The main point of writing down control structures is to characterize the reason-
ing strategy at a fairly high level: e.g., "first this task, then this task" or "do this inference 
until it produces no more solutions." Details of the control representation can safely be left 
to the design phase. If one spends much time on the control details in this stage, it might 
well happen that the work turns out to be useless when a decision is made to change the 
method for a task. 

Guideline 7-16:  CHOOSE ROLE NAMES THAT CLEARLY INDICATE HOW THIS DATA 

ITEM IS USED WITHIN THE TASK 
Rationale: Knowledge modelling (as in modelling in general) is very much about intro-
ducing an adequate vocabulary for describing the application problem, such that future 
users and/or maintainers of the system understand the way you perceived the system, The 
task roles are an important part of this naming process, as they appear in all simulations or 
actual traces of system behavior. It makes sense to choose these names with care. 

Guideline 7-17:  DO NOT INCLUDE STATIC KNOWLEDGE ROLES AS PART OF TASK 

INPUT/OUTPUT 
Rationale: The static knowledge roles only appear when we describe inferences. The idea 
is to free the task specification from the burden of thinking about the required underlying 
knowledge structures. Of course, methods have their assumptions about the required un-
derlying domain knowledge, but there is no point in already fixing the exact underlying 
domain-knowledge type. 

Guideline 7-18:  FOR REAL-TIME APPLICATIONS, CONSIDER USING A DIFFERENT 
REPRESENTATION THAN PSEUDOCODE FOR THE CONTROL STRUCTURE OF A TASK 

METHOD 
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Rationale: Real-time systems require an asynchronous type of control. The transfer func-
tion "receive" can be useful for emulating this in pseudocode, but in many cases a state-
transition type of representation is more natural, and thus worth using. 

Guidelines for specifying inference knowledge The following guidelines may help you 
in developing a specification of inferences and their corresponding knowledge roles: 

Guideline 7-19:  START WITH DEVELOPING THE GRAPHICAL REPRESENTATION OF 
THE INFERENCE STRUCTURE 
Rationale: Although the inference structure diagram contains less information than the 
textual specification, it is much more transparent. 

Guideline 7-20:  USE A STANDARD SET OF INFERENCES AS MUCH AS POSSIBLE 
Rationale: Earlier versions of KADS prescribed a fixed set of inference types, many 
of which are also used in this book. Experience has taught that prescribing a fixed set 
of inference types is too rigid an approach. Nevertheless, we recommend adherence to 
a standard, well-documented set as much as possible. This enhances understandability, 
reusability, and maintenance. In Chapter 13 we have included a catalog of inferences used 
in this book, each with a number of typical characteristics. Aben (1995) and Benjamins 
(1993) give descriptions of sets of inference types that have been widely used and are well 
documented. It is also useful to maintain your own catalog of inferences. 

Guideline 7-21:  BE CLEAR ABOUT SINGLE OBJECT ROLES OR SETS 
Rationale: A well-known confusion in inference structures is caused by the lack of clarity 
whether a role represents one single object or a set. For example, a select inference takes 
a set as input. In an inference structure a special notation can be used to indicate sets of 
objects (see the glossary of graphical notations). 

Guideline 7-22:  INFERENCES THAT HAVE NO INPUT OR THAT HAVE MANY OUTPUTS 
ARE SUSPECT 
Rationale: Although CommonKADS has no strict rules about the cardinality of the input 
and output roles of inferences, inferences without an input are considered unusual and 
inferences with many outputs (more than two) are also unusual in most models. Often 
these phenomena are indications of incomplete models or of overloading inferences (in the 
case of many outputs). 

Guideline 7-23:  CHOOSE DOMAIN-INDEPENDENT ROLE NAMES 
Rationale: It is tempting to use role names that have a domain-specific flavor. However, 
it is recommended to use domain-independent role names as much as possible. This en-
hances reusability. Anyway, you can still add the domain-specific terms as annotations to 
the roles. 
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Guideline 7-24:  STANDARDIZE ON LAYOUT 
Rationale: Like data-flow diagrams, inference diagrams are often read from left to right. 
Structure the layout in such a way that it is easy to detect what the order of the reasoning 
steps is. The well-known "horseshoe" form of heuristic classification (Clancey 1985) is a 
good example of a layout that has become standardized. 

Guideline 7-25:  DO NOT BOTHER TOO MUCH ABOUT THE DYNAMICS OF ROLE OB-
JECTS IN THE INFERENCE STRUCTURE 
Rationale: Inference structures are essentially static representations of a reasoning pro-
cess. They are not very well suited to represent dynamic aspects, such as a knowledge 
role that is continuously updated during reasoning. A typical example is a "differential," 
an ordered list of hypotheses under consideration. During every reasoning step the cur-
rent differential is considered and hypotheses are removed, added, or reordered. In the 
inference structure this would result in an inference that has the differential as input and as 
output. Some creative solutions have been proposed (e.g., double arrows with labels), but 
no satisfactory solution currently exists. We recommend being flexible and not bothering 
too much about this problem. 

Guideline 7-26:  USE THE SPECIFICATION SLOT FOR A CLEAR SPECIFICATION OF 
WHAT THE INFERENCE IS SUPPOSED TO DO, AND POSSIBLY WHAT METHODS CAN BE 
CONSIDERED IN THE DESIGN PHASE 
Rationale: Although an inference is considered to be a black box in the knowledge model, 
it is important input to the design phase to specify the conception that the knowledge 
engineer has in mind. Optionally, a number of possible methods to realize the inference 
can be enumerated. 

Guidelines for specifying domain knowledge Specifying domain knowledge is only to 
some extent different from "normal" data modelling. This means that you should feel free 
to use your existing repertoire of techniques for describing the static information in an 
application domain. A good example is the use of text-analysis techniques to generate a 
first set of possible concepts, relations, and attributes. 

Chapter 13 contains a number of special guidelines for working with subtype hierar-
chies. In Chapter 8 you will find a number of specialized techniques for domain-knowledge 
elicitation. In this chapter we have only included a couple of guidelines about the relation 
between inference and domain knowledge. 

Guideline 7-27:  A DOMAIN-KNOWLEDGE TYPE THAT IS USED AS A STATIC ROLE BY 
AN INFERENCE IS NOT REQUIRED TO HAVE EXACTLY THE "RIGHT" REPRESENTATION 
NEEDED FOR THIS INFERENCE 
Rationale: Getting the "right" representation is typically a design issue, and should not 
worry the knowledge engineer too much during knowledge modelling. The key issue is 
that the knowledge is in principle available. 
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Guideline 7-28:  THE SCOPE OF THE DOMAIN KNOWLEDGE IS TYPICALLY BROADER 
THAN WHAT IS BEING COVERED BY THE INFERENCES 

Rationale: Domain-knowledge modelling is partly carried out independently of the model 
of the reasoning process. This is a good strategy with respect to reuse (see Chapter 13), 
but will almost always give rise to domain-knowledge types that are not directly relevant 
to the final method(s) chosen for achieving the task. Also, the communication model may 
require additional domain knowledge, e.g., for explanation purposes. 

7.5 Knowledge Refinement 

7.5.1 Activity Overview 

During knowledge refinement two activities are carried out: 

1. Validate the knowledge model, usually with the help of a simulation technique; 
2. Complete the knowledge bases by adding domain-knowledge instances. 

The second activity is only carried out if the validation is at least partly successful. 

7.5.2 Activity 3.1: Validate Knowledge Model 

Validation can be done both internally and externally. Some people use the term "verifica-
tion" for internal validation ("is the model right?") and reserve "validation" for validation 
against user requirements ("is it the right model?"). 

Checking internal model consistency can be done through various techniques. Stan-
dard structured walk-throughs can be appropriate. Software tools exist for checking the 
syntax. Some of these tools also point at potentially missing parts of the model, e.g., an 
inference that is not used in any task method. 

External validation is usually more difficult and more comprehensive. The need for 
validation at this stage varies from application to application. Several factors influence this 
need. For example, if a large part of the model is being reused from existing models that 
were developed for very similar tasks, the need for validation is likely to be low. Task 
templates that are less well understood are more prone to errors or omissions. 

The main method of checking whether the model captures the required problem-
solving behavior is to simulate this behavior. This simulation can be done in two 
ways: 

1. Paper-based simulation This method resembles a structured walk-through. Define 
in advance a number of typical scenarios that reflect the required system behavior, 
and use the knowledge model to generate a paper trace of the scenario in terms of the 
knowledge model constructs. This can best be done in a table with three columns 
The left column describes the steps in the scenario in application-domain terminology. 
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Domain Model Explanation 
The user says: "the car 
does not start". 

DIAGNOSIS: complaint: A complaint is received, for which 
a diagnostic task is started. engine-behavior.status = 

does-not-start 
A possible cause is that 
the fuel tank is empty. 

cover: hypothesis; 
fuel-tank.status = empty 

One of the three possible causes is 
produced by this inference. The 
other two are "fuse blown" and 
"battery low". 

In that case we would 
expect the gas indicator to 
be in the lowest regions. 

predict expected-finding: 
gas-dial.value = zero 

The expected finding provides us 
with a way of getting supporting 
evidence for this hypothesis. 

System: "can you tell 
which value the gas 
dial indicates?". 
User"It looks 
normal to me". 

OBTAIN: actual-finding: 
gas-dial.value = normal 

This is not what we expected, so 
we can rule out this possible fault. 

The values differ, so it 
cannot be an empty fuel 
tank.. 

match: result = not-equal The test to find supporting 
evidence fails. 

We go and look for 
another possibility. 

cover: hypothesis = We repeat the process with a 
second possible solution. battery.status == low 

And so on The task-control loop continues. 

Table 7.1 
Paper simulation of the reasoning process in knowledge-model terms (see the middle column). The scenarios used 
here should have been predefined (i.e., in the identification phase). The first column indicates what happens in 
domain-specific terms; the second column describes the corresponding knowledge-model action; the final column 
gives a short explanation. 

The middle column indicates how each step maps onto a knowledge-model element, 
e.g., an inference is executed with certain roles as input and output. The right column 
can be used for explanations and comments. Table 7.1 shows an example of a paper 
simulation for a scenario of the car-diagnosis application. 

2. Simulation through a mock-up system An environment that can be used for 
a mock-up simulation is described in Chapter 12. Such an environment needs to 
have facilities for loading the knowledge-model specification plus a minimal set of 
implementation-specific pieces of code, such that the simulation can be done within a 
short time period (hours or days instead of weeks). 

The simulation should provide answers to the following questions: 

• How well does the model fit? 
• Are possible differences between the model and the scenario on purpose? 
• Where should the model be adapted? 
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7.5.3 Activity 3.2: Complete Knowledge Bases 

During the knowledge-specification stage we are mainly concerned with the domain 
schema. This schema contains two kinds of types: 

1. Domain types that have instances that are part of a certain case. One can view these as 
"information types"; their instances are similar to instances ("rows") in a database . 

2. Domain types that have instances that are part of a knowledge base. These can be seen 
as "knowledge types": their instances make up the contents of the knowledge base(s). 

Instances of the "information types" are never part of a knowledge model. Typically, 
data instances (case data) will only be considered when a case needs to be formulated 
for a scenario. However, the instances of the "knowledge types" need to be considered 
during knowledge-model construction. In the knowledge-specification stage a hypothesis 
is formulated about how the various domain-knowledge types can be represented. When 
one fills the contents of a knowledge base, one is in fact testing whether these domain-
knowledge types deliver a representation that is sufficiently expressive to represent the 
knowledge we need for the application. 

Usually, it will not be possible to define a full, correct knowledge base at this stage 
of development. Knowledge bases need to be maintained throughout their lifetime. Apart 
from the fact that it is difficult to be complete before the system is tested in real-life prac-
tice, such knowledge instances also tend to change over time. For example, in a medical 
domain knowledge about resistance to certain antibiotics is subject to constant change. 

In most cases, this problem is handled by incorporating into the system editing fa-
cilities for updating the knowledge bases. These knowledge editors should not use the 
internal system representations, but communicate with the knowledge maintainer in the 
terminology of the knowledge model. 

Various techniques exist for arriving at a first, fairly complete version of a knowledge 
base. One can check the already available transcripts of interviews and protocols, but this 
typically delivers only a partial set of instances. One can organize a structured interview, 
in which the expert is systematically taken through the various knowledge types. Still, 
omissions are likely to persist. A relatively new technique is to use automated techniques 
to learn instances of a certain knowledge type, but this is still in an experimental phase (see 
the references in the next chapter). 

Guideline 7-29:  IF IT TURNS OUT TO BE DIFFICULT TO FIND INSTANCES OF CERTAIN 

KNOWLEDGE TYPES, RECONSIDER THIS PART OF THE SCHEMA 

Rationale: Sometimes, we define a domain-knowledge type, such as a certain rule type, on 
the basis of just a few examples, under the assumption that there are more to be found. If 
this assumption turns out be wrong, it may well be that this part of the schema needs to be 
reconsidered. One can see a domain-knowledge type as a hypothesis about a useful struc-
turing of domain knowledge. This hypothesis needs to be empirically verified: namely, that 
in practice we can adequately formulate instances of this type for our application domain. 



184 Chapter 7 

Guideline 7-30:  LOOK ALSO FOR EXISTING KNOWLEDGE BASES IN THE SAME DO-
MAIN 
Rationale: Reusing part of an existing knowledge base is one of the most powerful forms 
of reuse. This really makes a difference! There is always some work to be done with 
respect to mapping the representation in the other system to the one you use, but it is often 
worth the effort. The quality is usually better and it costs less time in the end. 

7.6 Some Remarks about Knowledge-Model Maintenance 

The basic idea underlying the CommonKADS model suite is that it provides a correct 
and full view of the status of application development. The models can be developed in 
parallel. The project work should ensure that the models are up-to-date and consistent with 
each other. Because knowledge is not static but changes over time, the process is best seen 
as continuous development. 

Maintenance of the knowledge model is thus not essentially different from its devel-
opment. The main difference is that, for organizational reasons, it is often done by other 
people. This is one of the reasons we pay so much attention to elaborate specifications of 
the reasoning process in the vocabulary of the application domain and task. The knowledge 
model for an application should be understandable to newcomers on the team. 

If the knowledge model of an application is good and the domain is stable, one can ex-
pect the majority of maintenance to be concerned with activity 3.2 ("complete the knowl-
edge bases"). Typically, sets of rule instances will need to be updated, because knowledge 
tends to evolve over time. One of the advantages of using rule types is that it makes main-
tenance of the knowledge base much easier through its decomposition of the knowledge 
base into sets of knowledge elements sharing a similar structure. One can in fact construct 
an interface for a domain expert such that he can do this job himself. 

When we talk about system design and implementation in Chapter 11 and 12 you 
will see that this principle of continuous development also influences the link between 
analysis and design. Systems are constructed in such a way that they contain in fact all 
the analysis information (including the full knowledge model) to support clear routes for 
system maintenance. 

7.7 Documenting the Knowledge Model 

7.7.1 Knowledge-Model Specification 

The prime outcome of knowledge-model construction is the actual knowledge-model. Al-
though it is recommended that the final full specification is written in the language de-
scribed in the appendix, a more restricted specification may suffice. The minimal specifi-
cation consists of the following elements: 
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Knowledge Model Worksheet KM-1: Checklist Knowledge-Model Documentation 
Document 

Document entry Description 
KNOWLEDGE MODEL Full knowledge-model specification in text plus selected figures. 
INFORMATION SOURCES 
USED 

Listing of all the information sources about the application domain that 
were consulted. This list is first produced during the identification 
stage. 

GLOSSARY Listing of application-domain terms together with a definition, in 
textual form or other. Using Internet technology, one can create a 
glossary with hyperlinks to text and pictures that explains the terms. 

COMPONENTS CONSIDERED List of potentially reusable components that were considered in the 
identification stage, plus a decision and a rationale for why the 
component was or was not used. The components are typically of two 
types: task-oriented (e.g., task templates) and domain-oriented (e.g., 
ontologies, knowledge bases). 

SCENARIOS A list of the scenarios for solving application problems collected 
during the model-construction process. 

VALIDATION RESULTS Description of the result of validation studies, in particular paper-based 
simulation and/or computer simulations (prototyping). 

ELICITATION MATERIAL Include material gathered during elicitation activities (e.g., interview 
transcripts) in appendices. 

Table 7.2 
Worksheet KM-1: Checklist for the "knowledge-model documentation document". 

• A diagram of the full domain schema 
• An inference-structure diagram 
• A list of knowledge roles (both dynamic and static) with their domain mappings 
• Textual specifications of the tasks and task methods 

This set of specifications, although it lacks some of the textual detail, is in practice often 
sufficient to be understood without problems by the other project members. 

7.7.2 Additional Material 

It will be clear that in building a knowledge model a large amount of other material is 
gathered that is useful output as a kind of background documentation. It is therefore 
worthwhile to produce a "domain documentation document" containing at least the full 
knowledge model plus the following additional information: 

• A list of all information sources used 
• A listing of domain terms with explanations (= glossary) 
• A list of model components that were considered for reuse plus the corresponding 

decisions and rationale 
• A set of scenarios for solving the application problem 
• Results of the simulations undertaken during validation 
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In addition, add the transcripts of interviews and protocols as appendices to this docu- 
ment. Worksheet KM-1 (see Table 7.2) provides a checklist for generating the document. 

7.8 Bibliographical Notes and Further Reading 

Work on guidelines to support the knowledge-engineering process (and software engi-
neering in general) has always been scarce. There have been a few other process mod-
els proposed for model-based knowledge engineering. We mention the MIKE approach 
(Angele et al. 1998). 

Over the years quite a number of languages have been developed for CommonKADS. 
Some languages have been aimed at a direct implementation of the knowledge model. In 
our view this approach cannot be recommended because the operationality requirement 
of the language makes it by definition less expressive and therefore not well suited for 
knowledge modelling. A number of languages focus on the specification aspects and use a 
variety of formal specification techniques to this end. A good survey of these languages is 
given by Fensel and van Harmelen (1994). 
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Knowledge-Elicitation Techniques 

Key points of this chapter: 

• Knowledge elicitation is the process of getting the data needed for knowl-
edge modelling. 

• A number of elicitation techniques exist.In this chapter we discuss a small 
set of frequently used techniques, namely interviews, protocol analysis, lad-
dering, concept sorting, and repertory grids. 

• Different techniques are useful for different types of expertise data. 
• In a scenario we show how these techniques can be applied to the 

knowledge-modelling activities described in Chapter 7. 

8.1 Introduction 

This chapter discusses the problem of knowledge elicitation. Knowledge elicitation com-
prises a set of techniques and methods that attempt to elicit knowledge of a domain special-
ist through some form of direct interaction with that expert. The domain specialist, usually 
called the "expert," is a person that possesses knowledge about solving the application task 
we are interested in (cf. the "knowledge provider" role in Figure 2.6). 

•We begin by reviewing the nature and characteristics of the elicitation activity. Next, 
we consider the different types of expert who may be encountered. We then look at a range 
of methods and techniques for elicitation. We illustrate the use of these techniques with 
an example of an elicitation scenario. In this example it will become clear how elicitation 
techniques can be used to support the knowledge-modelling activities described in Chap-
ter 7. The example concerns an application in which offices are assigned to employees. 
In the example we make use of an knowledge-elicitation tool set named PC-PACK, which 
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supports the use of the techniques. This scenario and a demo version of the PC-PACK tools 
can be downloaded from the CommonKADS website. 

Throughout, the emphasis is on practical ways and means of performing elicitation. 
The use of an example will show how different techniques and tools can be used together 
synergistically, within the context of a knowledge-modelling methodology such as Com
monKADS. 

8.2 Characteristics of Knowledge Elicitation 

Elicitation can be seen as providing the material for knowledge modelling. The material 
is not completely "raw": the result of applying an elicitation technique is usually some 
structured form of data, e.g., markups, diagrams, lists of terms, formulas, informal rules, 
and so on. It is important to realize that one should not try to get real formal descriptions 
out of an elicitation technique. Imposing formal representations on elicitation typically 
leads to strong biases in the elicitation process and often results in bad data. Elicitation 
should be focused and structured, but also as open as possible. It is the task of knowledge 
modelling to convert the elicited material into a more formal description of the problem-
solving process. 

The people who carry out knowledge elicitation and analysis, the knowledge engi-
neers (also called "knowledge analysts"), are typically not people with a deep knowledge 
of the application domain. In the simplest case, the knowledge engineer may be able to 
gather information from a variety of nonhuman resources: textbooks, technical manuals, 
case studies, and so on. However, in most cases one needs actually to consult a practic-
ing expert. This may be because there isn't the documentation available, or because real 
expertise derives from practical experience in the domain, rather than from a reading of 
standard texts. Few knowledge models are ever built without recourse to experts at some 
stage. Those models not informed by actual expert understanding and practice are often 
the poorer for it. Two questions dominate in knowledge elicitation: 

1. How do we get experts to tell us, or else show us, what they do? 
2. How do we determine what constitutes their problem-solving competence? 

The task is enormous, particularly in the context of large applications. There are a 
variety of circumstances which contrive to make the problem even harder. Much of the 
power of human expertise lies in laid-down experience, gathered over a number of years, 
and represented as heuristics. A heuristic is defined as a rule of thumb or generally proven 
method to obtain a result given particular information. Often the expertise has become so 
routinized that experts no longer know what they do or why. 

There are obviously clear commercial reasons to try to make knowledge elicitation an 
effective process. We would like to be able to use techniques that will minimize the effort 
spent in gathering, transcribing, and analyzing an expert's knowledge. We would like to 
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minimize the time spent with expensive and scarce domain specialists. And, of course, we 
would like to maximize the yield of usable knowledge. 

There are also sound engineering reasons why we would like to make knowledge elic-
itation a systematic process. We would like the procedures of knowledge elicitation to 
become common practice and conform to clear standards. This will help ensure that the 
results are robust, that they can be used on various experts in a wide range of contexts by 
any competent knowledge engineer. We also hope to make our techniques reliable. This 
will mean that they can be applied with the same expected utility by different knowledge 
engineers. But however systematic we want to be, our analysis must of necessity begin 
with the expert. 

8.3 On Experts 

Experts come in all shapes and sizes. Ignoring the nature of your expert is a potential pitfall 
in knowledge elicitation. A coarse guide to a typology of experts might make the issues 
clearer. Let us take three categories we shall refer to as "academics," "practitioners," and 
"samurai." In practice experts may embody elements of all three types. Each of these types 
of expert differs along a number of dimensions. These include the outcome of their expert 
deliberations, the problem-solving environment they work in, the state of the knowledge 
they possess (both its internal structure and its external manifestation), their status and 
responsibilities, their source of information, and the nature of their training. 

8.3.1 Three Types of Expert 

On the basis of these dimensions we can distinguish three different types of expert: 

1. The academic type regards his domain as having a logically organized structure. Gen-
eralizations over the laws and behavior of the domain are important to the academic 
type. Theoretical understanding is prized. Part of the function of such experts may be 
to explicate, clarify, and teach others. Thus they talk a lot about their domains They 
may feel an obligation to present a consistent story both for pedagogic and professional 
reasons. Their knowledge is likely to be well structured and accessible. These experts 
may suppose that the outcome of their deliberations should be the correct solution of 
a problem. They believe that the problem can be solved by the appropriate application 
of theory. They may, however, be remote from everyday problem-solving. 

2. The practitioner class on the other hand is engaged in constant day- to-day problem-
solving in the domain For them specific problems and events are the reality. Their 
practice may often be implicit and what they desire as an outcome is a decision that 
works within the constraints and resource limitations in which they are working. It may 
be that the generalized theory of the academic is poorly articulated in the practitioner. 
For the practitioner heuristics dominate and theory is sometimes thin on the ground. 
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3. The samurai is a pure performance expert — the only reality is the performance of ac-
tion to secure an optimal performance. Practice is often the only training and responses 
are often automatic. Samurai usually explicate their knowledge verbally. 

One can see this sort of division in any complex domain. Consider, for example, med-
ical domains where we have professors of the subject, busy house staff working the wards, 
and medical ancillary staff performing many important but repetitive clinical activities. 

The knowledge engineer must be alert to these differences because the various types 
of expert will perform very differently in knowledge-elicitation situations. The academics 
will be concerned about demonstrating mastery of the theory. They will devote much ef-
fort to characterizing the scope and limitations of the domain theory. Practitioners, on the 
other hand, are driven by the cases they are solving from day to day. They have often com-
piled or routinized any declarative descriptions of the theory that supposedly underlie their 
problem-solving. The performance samurai will more often than not turn any knowledge-
elicitation interaction into a concrete performance of the task — simply exhibiting their 
skill. 

)' 

8.3.2 Human Limitations and Biases 

But there is more to say about the nature of experts and this is rooted in general principles 
of human information processing. Psychology has demonstrated the limitations, biases, 
and prejudices that pervade all human decision-making — expert or novice. To illustrate, 
consider the following facts, all potentially crucial to the enterprise of knowledge elicita-
tion. 

It has been shown repeatedly that the context in which one encodes information is the 
best one for recall. It is possible, then, that experts may not have access to the same in-
formation when in a knowledge-elicitation interview as they do when actually performing 
the task. So there are good psychological reasons to use techniques which involve observ-
ing the expert actually solving problems in the normal setting. In short, protocol analysis 
techniques may be necessary, but will not be sufficient for effective knowledge elicitation. 

Consider also the issue of biases in human cognition. One well-known problem is that 
humans are poor at manipulating uncertain or probabilistic evidence. This may be impor-
tant in knowledge elicitation for those domains that require a representation of uncertainty. 
Consider the rule: 

IF the engine will not turn over AND 
the lights do not come on 

THEN the battery is flat with probability X 

   

This seems like a reasonable rule, but what is the value of X — should it be 0.9, 0.95, 
0.79? The value that is finally decided upon will have important consequences for the 
working of the system, but it is very difficult to decide upon it in the first place. Medical 
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diagnosis is a domain full of such probabilistic rules, but even expert physicians cannot 
accurately assess the probability values. 

In fact there are a number of documented biases in human cognition which lie at the 
heart of this problem (Kahneman et al. 1982). People are known to undervalue prior prob-
abilities, to use the ends and middle of the probability scale rather than the full range, and 
to anchor their responses around an initial guess. Cleaves (1987) lists a number of cogni-
tive biases likely to be found in knowledge elicitation, and makes suggestions about how 
to avoid them. However, many knowledge engineers prefer to avoid the use of uncertainty 
wherever possible. 

Cognitive bias is not limited to the manipulation of probability. A series of experiments 
has shown that systematic patterns of error occur across a number of apparently simple 
logical operations. For example, modus tollens states that if "A implies B' is true, and "not 
B" is true, then "not N' must be true. However, people, whether expert in a domain or not, 
make errors on this rule. This is in part due to an inability to reason with contrapositive 
statements. Also in part it depends on what A and B actually represent. In other words, 
they are affected by the content. This means that one cannot rely on the veracity of experts' 
(or indeed anyone's) reasoning. 

All this evidence suggests that human reasoning, memory, and knowledge represen-
tation is rather more subtle than might be thought at first sight. The knowledge engineer 
should be alert to some of the basic findings emanating from cognitive psychology. While 
no text is perfect as a review of bias in problem-solving, the book by Meyer and Booker 
(1991) is reasonably comprehensive. 

8.4 Elicitation Techniques 

The techniques we will describe are methods that we have found in our work to be both 
useful and complementary. We can subdivide them into natural and contrived methods. 
The distinction is a simple one. A method is described as natural if it is one an expert 
might informally adopt when expressing or displaying expertise. Such techniques include 
interviews or observing actual problem-solving. There are other methods we will describe 
in which the expert undertakes a contrived task. The task elicits expertise in ways that are 
not usually familiar to an expert. 

It is worth noting that Schweikert et al. (1987) found an expert's own opinion of the 
worth of a technique no guide to its real value. In methods such as sorting we have a 
situation in which the expert is trying to demonstrate expertise in a nonnatural or con-
trived manner. He might be quite used to chatting about his field of expertise, but sorting 
is different and experts are suspicious of it. Experts may in fact feel they are perform-
ing badly with such methods. However, on analysis one finds that the yield of knowl-
edge is as good and sometimes even better than for noncontrived elicitation techniques 
(Shadbolt and Burton 1989). 
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In this chapter we discuss five types of techniques: 

1. Interviewing 
2. Protocol analysis 
3. Laddering 
4. Concept sorting 
5. Repertory grids 

The first two elicitation methods are both natural under the definition above. The other 
three techniques — laddering, concept sorting, and repertory grids — are more contrived. 
In the rest of this section we discuss the individual techniques. In the following section the 
use of these techniques is demonstrated in a practical example. 

8.4.1 Interviewing 

Almost everyone starts knowledge elicitation with one or more interviews. The interview 
is the most commonly used knowledge-elicitation technique and takes many forms, from 
the completely unstructured interview to the formally planned, structured interview. 

yi 

Unstructured interview Unstructured interviews have no agenda (or, at least, no de-
tailed agenda) set either by the knowledge engineer or by the expert. Of course, this does 
not mean that the knowledge engineer has no goals for the interview, but it does mean that 
she has considerable scope for proceeding: there are few constraints. The advantages of 
this approach stem from this lack of constraints. First, the approach can be used whenever 
one of the goals of the interview is that the expert and the knowledge engineer establish a 
good relationship. There are no formal barriers to the discussion, ranging as either partic-
ipant sees fit. Second, the engineer can get a broad view of the topic easily; she can "fill 
in the gaps" in her own perceived knowledge of the domain, thereby making herself more 
comfortable with her mental model. Third, the expert can describe the domain in a way 
with which he is familiar, discussing topics that he considers important and ignoring those 
he considers uninteresting. 

The disadvantages are clear enough. The lack of structure can lead to inefficiency. The 
expert may be unnecessarily verbose. He may concentrate on topics whose importance he 
exaggerates. The coverage of the domain may be too patchy. The data acquired may be 
difficult to integrate, either because the data do not form a unity, or because there are in-
consistencies. This last will be an even more likely occurrence if the information provided 
by several experts is to be collated. 

Structured interview The structured interview is a formal version of the interview in 
which the knowledge engineer plans and directs the session. The structured interview 
has the advantage that it provides structured transcripts that are easier to analyze than 
unstructured chat. 
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Probe code Question template Effect 

P1 Why would you do that? Converts an assertion into a 
rule 

P2 How would you do that? Generates lower-order 
rules 

P3 When would you do that? 
Is <the rule> always the case? 

Reveals the generality of the 
rule and may generate other 
rules 

P4 What alternatives to <the 
prescribed action/decision> 
are there? 

Generates more rules 

P5 What if it were not the case that 
<currently true condition> ? 

Generates rules for when 
current condition does not 
apply 

P6 Can you tell me more about 
<any subject already 
mentioned> ? 

Used to generate further 
dialogue if expert dries up 

Table 8.1 
Probes to elicit further information in structured interviews. 

The formal interview we have specified here constrains the provider-elicitor dialogue 
to the general principles of the domain. Experts do not work through a particular scenario 
extracted from the domain by the elicitor; rather the experts generate their own scenarios 
as the interview progresses. The structure of the interview is as follows. 

1. Ask the expert to give a brief (10-minute) outline of the target task, including the fol-
lowing information: 

a. An outline of the task, including a description of the possible solutions or outcomes 
of the task; 

b. A description of the variables which affect the choice of solutions or outcomes; 
c. A list of major rules which connect the variables to the solutions or outcomes. 

2. Take each rule elicited in stage 1; ask when it is appropriate and when it is not. The aim 
is to reveal the scope (generality and specificity) of each existing rule, and hopefully 
generate some new rules. 

3. Repeat stage 2 until it is clear that the expert will not produce any new information. 

The task selection is important. The scope of the task should be relatively small and 
should typically be guided by an initial model selection (e.g., a task template). It is also 
important in this technique to be specific about how to perform stage 2. We have found that 
it is helpful to constrain the elicitor's interventions to a specific set of probes, each with a 
specific function. Table 8.1 contains a list of probes which will help in stage 2. 
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The idea here is that the elicitor engages in a type of slot/filler dialogue. Listening 
out for relevant concepts and relations imposes a large cognitive load on the elicitor. The 
provision of fixed linguistic forms within which to ask questions about concepts, relations, 
attributes,and values makes the elicitor's job very much easier. It also provides sharply 
focused transcripts which facilitate the process of extracting usable knowledge. Of course, 
there will be instances when none of the above probes are appropriate (such as the case 
when the elicitor wants the expert to clarify something). However, you should try to keep 
these interjections to a minimum. The point of specifying such a fixed set of linguistic 
probes is to constrain the expert into giving you all, and only, the information you want. 

The sample of dialogue below is taken from a real interview of this kind. It is the 
transcript of an interview by a knowledge engineer (KE) with an expert (EX) on fault di-
agnosis of a visual display unit (VDU). Also, the type of probe by the knowledge engineer 
is indicated. In the transcripts we use the symbol + to represent a pause in the dialogue. 

EX I actually checked the port of the computer 
KE [P1] Why did you check the port? 
EX If it's been lightning recently then it's a good idea to 

check the port + because lightning tends to dam-
age the ports 
KE [P4] Are there any alternatives to that problem? 
EX Yes, that ought to be prefaced by saying do that if it was 

several keys with odd effects + not necessar- 
ily all of them, 

but more than two 
KE [P1] Why does it have to be more than two? 
EX Well if it was only one or two keys doing funny things then 

the thing to do is check they're closing properly + speed 
would affect all keys, parity would af- 

fect about half the keys 

This is quite a rich piece of dialogue. From this section of the interview alone we can 
extract the following rules. 

IF there has been recent lightning 
THEN check port for damage 

IF there are two or fewer malfunctioning keys 
THEN check the key contacts 

IF about half the keyboard is malfunctioning 
THEN check the parity 

IF the whole keyboard is malfunctioning 
THEN check the speed 

Of course, these rules may need refining in later elicitation sessions, but the text of the 
dialogue shows how the use of the specific probes has revealed a well-structured response 
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from the expert. A possible second-phase elicitation technique would be to present these 
rules back to the expert and ask about their truthfulness, scope and so forth. One can also 
apply the teach-back technique of Johnson & Johnson (1987). This involves creating an 
intermediate representation of the knowledge acquired, which is then "taught back" to the 
expert, who can then check or, if necessary, amend the information. 

Potential pitfalls In all interview techniques (and in some of the other generic techniques 
as well) there exist a number of dangers that have become familiar to knowledge engineers. 

One problem is that experts will only produce what they can verbalize. If there are 
nonverbalizable aspects to the domain, the interview will not recover them. This can arise 
from two causes. It may be that the knowledge was never explicitly represented or artic-
ulated in terms of language (consider, for example, pattern recognition expertise). Then 
there is the situation where the knowledge was originally learned explicitly in a proposi-
tional or language-like form. However, in the course of experience it has become routinized 
or automized. We often use computing analogy to refer to this situation and speak of the 
expert as having compiled the knowledge. 

This can happen to such an extent that experts may regard the complex decisions they 
make as based on hunches or intuitions . Nevertheless, these decisions are based upon large 
amounts of remembered data and experience, and the continual application of strategies. 
In this situation they tend to give black box replies: "I don't know how I do that....", "It is 
obviously the right thing to do.... ." 

Another problem arises from the observation that people (and experts in particular) 
often seek to justify their decisions in any way they can. It is a common experience of the 
knowledge engineer to get a perfectly valid decision from an expert, and then to be given 
a spurious justification. 

For these and other reasons we have to supplement interviews with additional methods 
of elicitation. Elicitation should always consist of a program of techniques and methods. 
We discuss a set of techniques in the remainder of this section. 

When to use Unstructured interviews are usually only carried out in the early stages of 
the modelling process, e.g., during organizational analysis or at the start of the knowl-
edge identification phase. The structured interview is particularly useful in the knowledge 
refinement stage, in which the knowledge bases need to be "filled." The probes direct 
the search for missing knowledge pieces. The structured interview also provides useful 
information in the later phases of knowledge identification and during initial knowledge 
specification, e.g., to get information about key concepts and relations. 

A good guideline is to tape every structured interview and to create a transcript from 
it. During unstructured interviews one can just take notes, although a transcript can have 
an added value, e.g., for creating a glossary. The transcript can be used in knowledge-
analysis tools such as PC-PACK to create markups in order to identify potential concepts, 
properties, and relations. 
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8.4.2 Protocol Analysis 

Protocol analysis (PA) is a generic term for a number of different ways of performing some 
form of analysis of the expert(s) actually solving problems in the domain. In all cases the 
engineer takes a record of what the expert does — preferably by video- or audiotape — or 
at least by written notes. Protocols are then made from these records and the knowledge 
engineer tries to extract meaningful structure and rules from the protocols. 

Getting data for protocol analysis We can distinguish two general types of PA, namely 
online and offline. In on-line PA the expert is being recorded solving a problem, and 
concurrently a commentary is made. The nature of this commentary specifies two subtypes 
of the online method. The expert performing the task may be describing what he or she 
is doing as problem-solving proceeds. This is called self-report (or "thinking aloud"). A 
variant on this is to have another expert provide a running commentary on what the expert 
performing the task is doing. This is called shadowing. 

Offline PA allows the expert(s) to comment retrospectively on the problem solving 
session — usually by being shown an audiovisual record of it. This may take the form 
of retrospective self-report by the expert who actually solved the problem, it could be a 
critical retrospective report by other experts, or there could be group discussion of the 
protocol by a number of experts, including its originator. In the case in which only a 
behavioral protocol is obtained, then obviously some form of retrospective verbalization 
of the problem-solving episode is required. 

Requirements for a session Before PA sessions can be held, a number of preconditions 
should be satisfied. The first of these is that the knowledge engineer is sufficiently ac-
quainted with the domain to understand the expert's tasks. Without this the elicitor may 
completely fail to record or take note of important parts of the expert's behavior. 

A second requirement is the careful selection of problems for PA. The sampling of 
problems is crucial. PA sessions may take a relatively long time, only a few problems can 
be addressed (Shadbolt and Burton 1989)). Therefore, the selection of problems should be 
guided by how representative they are. Asking experts to sort problems into some form of 
order (Chi et al. 1981) may give an insight into the classification of types of problems and 
help in the selection of suitable problems for PA (see also the next two sections on concept 
sorts and laddering). 

A further condition for effective PA is that the expert(s) should not feel embarrassed 
about describing their expertise in detail. It is preferable for them to have experience in 
thinking aloud. Uninhibited thinking aloud has to be learned in the same way as talking 
to an audience. One or two short training sessions may be useful, in which a simple task 
is used as an example. This puts the expert at ease and familiarizes them with the task of 
talking about their problem solving. 
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Analyzing the transcript Where a verbal or behavioral transcript has been obtained we 
next have to contemplate its analysis. Analysis might include the encoding of the transcript 
into "chunks" of knowledge (which might be actions, assertions, propositions, key words, 
etc.), and should result in a rich domain representation with many elicited domain features 
together with a number of specified links between those features. 

There are a number of principles that can guide the protocol analysis. For example, 
analysis of the verbalization resulting in the protocol can distinguish between information 
that is attended to during problem-solving, and that which is used implicitly. A distinction 
can be made between information brought out of memory (such as a recollection of a sim-
ilar problem solved in the past), and information that is produced on the spot by inference. 
The knowledge chunks referred to above can be analyzed by using the expert's syntax, or 
the pauses he takes, or other linguistic cues. Syntactical categories (e.g., use of nouns, 
verbs) can help distinguish between domain features and problem-solving actions and so 
on. 

In trying to decide when it is appropriate to use PA, bear in mind that it is alleged 
that different knowledge-engineering techniques differentially elicit certain kinds of infor-
mation. With PA it is claimed that the sorts of knowledge elicited include the "when" 
and "how" of using specific knowledge. It can reveal the problem-solving and reasoning 
strategies, evaluation procedures,and evaluation criteria used by the expert, and procedural 
knowledge about how tasks and subtasks are decomposed. A PA gives you a complete 
episode of problem solving. It can be useful as a verification method to check that what 
people say is what they do. It can take you deep into a particular problem. However, it is 
intrinsically a narrow method since usually one can only run a relatively small number of 
problems from the domain. 

Finally, when performing PA it is useful to have a set of conventions for the actual 
interpretation and analysis of the resultant data. Ericsson & Simon (1993) provide the 
classic exposition of protocol analysis although it is oriented toward cognitive psychology. 

Coding scheme Traditionally, psychologists analyze think-aloud protocols with the use 
of a coding scheme. The coding scheme consists of a predefined set of actions and/or 
concepts that one should use to classify text fragments of the protocol. In knowledge 
modelling, the selected task template can fulfill the role of a coding scheme. The analyst 
marks where a certain inference is made, a certain task is started, or a knowledge role 
is used. Because task templates are useful as a coding scheme for expertise data, these 
templates have also been called "interpretation models." 

Guidelines for PA sessions When eliciting data for protocol analysis through a self-
report or other means, the following are a useful tips to help enhance its effectiveness: 

Guideline 8-1:  PRESENT PROBLEMS AND DATA IN A REALISTIC WAY 
Rationale: The way problems and data are presented should be as close as possible to a 
real situation. 
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Guideline 8-2:  TRANSCRIBE THE PROTOCOLS AS SOON AS POSSIBLE 
Rationale: The meaning of many expressions is soon lost, particularly if the protocols are 
not recorded. In almost all cases an audio recording is sufficient, but video recordings have 
the advantage of containing additional and disambiguating information. 

Guideline 8-3:  AVOID LONG SELF-REPORT SESSIONS 
Rationale: Because of the need to perform a double task the process of thinking aloud 
is significantly more tiring for the expert than being interviewed. This is one reason why 
shadowing is sometimes preferred. 

Guideline 8-4:  IN GENERAL, THE PRESENCE OF THE KNOWLEDGE ENGINEER IS RE-
QUIRED IN A PA SESSION 
Rationale: Although the knowledge engineer adopts a background role, her very pres-
ence suggests a listener to the interviewee, and lends meaning to the thinkaloud process. 
Therefore, comments on audibility, or even silence,by the knowledge engineer are quite 
acceptable. 

Potential pitfalls Protocol analyses share with the unstructured interview the problem 
that they may deliver unstructured transcripts which are hard to analyze. Moreover, they 
focus on particular problem cases and so the scope of the knowledge produced may be 
very restricted. It is difficult to derive general domain principles from a limited number of 
protocols. These are practical disadvantages of protocol analysis, but there are more subtle 
problems. 

Two actions, which look exactly the same to the knowledge engineer, may be the 
result of two quite different sets of considerations. This is a problem of impoverished 
interpretation by the knowledge engineer. The knowledge engineer simply does not know 
enough to discriminate the actions. The obverse to this problem can arise in shadowing 
and the retrospective analyses of protocols by experts. Here the expert(s) may simply 
wrongly attribute a set of considerations to an action after the event. This is analogous to 
the problems of misattribution in interviewing. 

A particular problem with self-report, apart from being tiring, is the possibility that 
verbalization may interfere with performance. The classic demonstration of this is for a 
driver to attend to all the actions involved in driving a car. If one consciously monitors 
such parameters as engine revs, current gear, speed, visibility, steering wheel position and 
so forth, the driving invariably gets worse. Such skill is shown to its best effect when 
performed automatically. This is also the case with certain types of expertise. By asking 
the expert to verbalize, one is in some sense destroying the point of doing protocol analysis 
— to access procedural, real-world knowledge. 

Having pointed to these disadvantages, it is also worth remembering that context is 
sometimes important for memory — and hence for problem solving. For most nonver-
balizable knowledge, and even for some verbalizable knowledge, it may be essential to 
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observe the expert performing the task. For it may be that this is the only situation in 
which the expert is actually able to perform it. 

When to use As mentioned above, PA is particularly useful in analyzing dynamic reason-
ing behavior. This means that PA is most helpful in the specification of task and inference 
knowledge. PA is often used for template selection, e.g., by using protocols to generate 
an annotated inference structure. Also, it can provide information for the specification of 
task-method control. If no template is suitable, PA can be used to construct a task/inference 
description more or less from scratch. This will typically increase the number of elicitation 
sessions needed. In addition, protocol analysis is used for knowledge-model validation, ei-
ther by finding out whether a fully specified model fits the data, or as an information source 
for validation scenarios. 

An example of using protocol analysis for template selection is described in the sce-
nario further on. 

8.4.3 Laddering 

Laddering is a somewhat contrived technique, and you will need to explain it fully to 
the expert before starting. The expert and the knowledge engineer construct a graphical 
representation of the domain in terms of the relations between domain and problem-solving 
elements. The result is a qualitative, two-dimensional graph where nodes are connected by 
labeled arcs. The graph takes the form of a hierarchy of trees. No extra elicitation method 
is used here, but expert and elicitor construct the graph together by negotiation. 

The key point is that, having acquired some of the key terms in the domain, organizing 
them into some sort of structure is a natural thing to do. Laddering is a very straightforward 
means. 

The laddering technique is typically used to construct some initial, informal hierar-
chies. One can see a laddering tool as a scruffy tool for hierarchical ordering without 
imposing too many semantic restrictions. The objects in the ladders can be of many differ-
ent types. The terms "concept" and "attribute" should be interpreted loosely in the context 
of laddering. For example, no strict distinction needs to be made yet between "concepts" 
and "instances" (something that is difficult in the early phases of knowledge modelling). 
We will see that the tool used in the scenario supports laddering of any type of object. 
Object types can be defined by the user and are available as text markers. 

When to use Laddering is used mostly in the early phases of domain exploration. It is 
the groundwork for the more formal representation in the knowledge model. 

8.4.4 Concept Sorting 

Concept sorting is a technique that is useful when we wish to uncover the different ways an 
expert sees relationships between a fixed set of concepts. In the simplest version an expert 
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is presented with a number of cards on each of which a concept word is printed. The cards 
are shuffled and the expert is asked to sort the cards into either a fixed number of piles or 
into any number of piles the expert finds appropriate. This process is repeated many times. 

Using this task one attempts to get multiple views of the structural organization of 
knowledge by asking the expert to do the same task over and over again. Each time the 
expert sorts the cards he should create at least one pile that differs in some way from 
previous sorts. The expert should also provide a name or category label for each pile of 
each different sort. 

Variants of the simple sort are different forms of hierarchical sort. One such version 
is to ask the expert to proceed by producing first two piles; on the second sort, three; then 
four, and so on. Finally we ask if any two piles have anything in common. If so you have 
isolated a higher-order concept that can be used as a basis for future elicitation. 

The advantages of concept sorting can be characterized as follows. It is fast to apply 
and easy to analyze. It forces into an explicit format the constructs which underlie an 
expert's understanding. In fact it is often instructive to the expert. A sort can lead the 
expert to see structure in his view of the domain which he himself has not consciously 
articulated before. Finally, in domains where the concepts are perceptual in nature (e.g., 
x-rays, layouts, and pictures of various kinds), then the cards can be used as a means of 
presenting these images and attempting to elicit names for the categories and relationships 
that might link them. 

There are, of course, features to be wary of with this sort of technique. Experts can 
often confound dimensions by not consistently applying the same semantic distinctions 
throughout an elicitation session. Alternatively, they may oversimplify the categorization 
of elements, missing out on important caveats. 

An important tip with all of the techniques we are reviewing is always to audiotape 
these sessions. An expert makes many asides, comments, and qualifications in the case of 
sorting ranking and so on. In fact one may choose to use the contrived methods as a means 
to carry out auxiliary structured interviews. The structure this time is centered around the 
activity of the technique. 

When to use Concept sorting can discover new concepts and attributes, and is therefore 
particularly helpful in constructing a domain schema in unfamiliar domains. The technique 
is able to uncover many different viewpoints from which one can look at an application 
domain. Concept sorting requires some prestructuring of the data, e.g., thorough markups 
of interview transcripts. The technique is complementary to repertory grids. 

8.4.5 Repertory Grids 

The final technique we will consider is the repertory grid. This technique has its roots in the 
psychology of personality (Kelly 1955) and is designed to reveal a conceptual map of a do- 
main in a fashion similar to the card sort, as discussed above (see Shaw and Gaines (1987) 
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for a full discussion). The technique as developed in the 1950s was very time-consuming 
to administer and analyze by ha'nd. This naturally suggested that an implemented version 
would be useful. 

Briefly, subjects are presented with a range of domain elements and asked to choose 
three, such that two are similar and different from the third. Suppose we were trying to 
uncover an astronomer's understanding of the planets. We might present him with a set of 
planets, and he might choose Mercury and Venus as the two similar elements, and Jupiter 
as different from the other two. The subject is then asked the reason for differentiating 
these elements, and this dimension is known as a construct. In our example "size" would 
be a suitable construct. The remaining domain elements are then rated on this construct. 

This process continues with different triads of elements until the expert can think of 
no further discriminating constructs. The result is a matrix of similarity ratings, relating 
elements, and constructs. This is analyzed using a statistical technique called cluster anal-
ysis. In knowledge engineering, as in clinical psychology, the technique can reveal clusters 
of concepts and elements which the expert may not have articulated in an interview. The 
repertory grid is built up interactively, and the expert is shown the resultant knowledge. 
Experts have the opportunity to refine this knowledge during the elicitation process. 

When to use This technique can be seen as the statistical counterpart of concept sorting. 
Like the latter, the repertory grids is particularly useful when trying to uncover the structure 
of an unfamiliar domain It is used mainly to support the specification of the domain 
schema, both in its initial and in its more advanced stages. 

8.4.6 Other Techniques 

Table 8.2 summarizes the main features of the techniques discussed above. The five cat-
egories of techniques are just a selection from the available elicitation techniques. For 
example, rule-induction techniques (Michalski et al. 1983, Carbonell 1989) can be used to 
derive domain rules automatically. Such a tool can also used to discover rule patterns, 
leading to specification of rule types in the knowledge model. 

8.5 An Elicitation Scenario 

In this scenario we show how the elicitation techniques described above can be applied to a 
sample problem. The problem domain concerns the assignment of offices to employees of 
a department of a research institute. In this scenario we make use of the PC-PACK system. 
PC-PACK is a tool set that supports the use of elicitation techniques. A demo version of 
this tool set plus this scenario can be downloaded from the CommonKADS website. Tool 
sets such as PC-PACK are helpful aids for knowledge analysts. In the near future we will 
see integrated elicitation and modelling tools. At the moment such tools are not yet on the 
market. 
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Technique Used for Tool support 
Unstructured 
interview 

Familiarization with organization 
and application domain 

Markup tools; text analysis 

Structured 
interview 

Knowledge-identification 
activities; initial knowledge 
specification; completing the 
knowledge bases 

Markup tools; rule editor (when 
used for completing the knowledge 
base) 

Protocol analysis Checking a task template 
Generating an inference/task 
specification (in case of unfamiliar 
application domains, for which no 
models exist yet) 

Marking up a transcript with 
inference and/or task markers 

Laddering Preparatory work for 
domain-schema specification with 
respect to useful hierarchies and 
concept attributes 

Graphical support for constructing 
multiple hierarchies 

Concept sorting Domain-schema specification in 
unfamiliar domains 

Graphical support tool for creating 
piles and new features 

Repertory grid Domain-schema specification in 
unfamiliar domains 

Graphical grid presentation/editing 
plus cluster analysis software 

Table 8.2 
Summary of the elicitation techniques discussed. 

The scenario shows how elicitation techniques can be used to get the data required by 
the knowledge-modelling activities described in Chapter 7. In this scenario we assume that 
an initial knowledge-identification phase has been conducted. The results of this phase are 
described in the next subsection. In the scenario we go through the initial activities in the 
knowledge-specification phase (see Figure 7.1). 

8.5.1 The Sample Problem: Office Assignment 

Problem context The members of a research group of a computer science laboratory are 
moved to a new floor of their building. Due to funding cuts, they get a limited number 
of rooms. The problem is to build a system which can allocate the members to a suitable 
office. There is a constraint, however. It is important that the system also provides a 
cognitive model of the expert. In other words, the resulting system must be able to replicate 
the expert's problem-solving and solve new problems as the expert would have solved 
them. 

Available information Within the group, there are a number of different types of work-
ers. Thomas is head of the research group. Eva does the administrative management of the 
group. Monika and Ulrike are the secretaries. Hans, Katharina, and Joachim are heads of 
research projects. The other people are employed as researchers. 
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Action by the expert Self-report transcript (stylized) 
1 Put Thomas D. into office 

C5-117 
1 a 

lb 

The head of group needs a central office so that s/he 
is as close as possible.to  all the members of the 
group . This should be a large office. 
This assignment is defined first, as the location of the 
office of the head of group restricts the possibilities 
of the subsequent assignments. 

2 Monika X. and Ulrike U. into 
office C5-119. 

2a The secretaries' office should be located close to the 
head of group. Both secretaries should work together 
in one large office. This assignment is executed as 
soon as possible, as its possible choices are 
extremely constrained. 

3 Eva I. into C5-116 3a 

3b 

The manager must have maximum access to the head 
of group and to the secretariat. At the same time 
he/she should have a centrally located office. A small 
office will do. 
This is the earliest point at which this decision can be 
taken. 

4 Joachim I. into C5-115. 4a The heads of large projects should be close to the 
head of group and the secretariat. There really is no 
reason for the sequence of assignments of Joachim, 
Hans, and Katharina. 

5 Hans W. into C5-114. 5a The heads of large projects should be close to the 
head of group and the secretariat. 

6 Katharina N. into C5-113. 6a The heads of large projects should be close to the 
head of group and the secretariat. 

7 Andy and Uwe T. into 
C5-120. 

7a Both smoke. To avoid conflicts with nonsmokers 
they share an office. Neither of them is eligible for a 
single office. This is the first twin-room assignment 
as the smoker/nonsmoker conflict is a severe one. 

8 Werner L. and Rirgen L. into 
office C5-123. 

8a 

8b 

They are both implementing systems, both 
nonsmokers. They do not work on the same project, 
but they work on related subjects. Members of the 
same projects should not share offices. Sharing with 
members of other projects enhances synergy effects 
within the research group. 
There are really no criteria for the sequence of 
twin-room assignments. 

9 Marc M. and Angi W. into 
office C5122. 

9a Marc is implementing systems; Angi isn't. This 
should not be a problem. Putting them together 
would ensure good cooperation between the 
RESPECT and the KRITON projects. 

10 Harry C. and Michael T. into 
office C5-121. 

10a They are both implementing systems. Harry 
develops object systems. Michael uses them. This 
should create synergy. 

Table 8.3 
Stylized transcript of a self-report protocol. 
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C5-124 
printer/ 
copier 

C5-123 C5-122 C5-121 C5-120 

Figure 8.1 
Floor plan of the sample problem. 

The floor of the building where the group moves to is depicted in Figure 8.1. The 
shaded rooms are not available as office space. C5-117 and C5-119 to C5-123 are large 
rooms which can hold two people. The others are rooms for single-person use. 

In Table 8.3 we have listed part of a transcript in which the expert solves the allocation 
problem in a self-report setting. This protocol constitutes the main "raw material" we use 
in this elicitation scenario. 

8.5.2 Creating the Initial Domain Schema 

Several elicitation techniques are useful when building an initial domain schema, particu-
larly when the knowledge engineer does not have some data model or domain schema she 
can reuse. In this subsection we show the use of the following techniques: 

• Protocol analysis A simple mark-up tool can be used to find the relevant domain 
terms in a transcript and in other information sources. 

• Laddering Laddering is used to create some initial domain hierarchies. 
• Concept sorting and repertory grid Both these tools can be used to discover do-

main features that were not directly apparent from the domain material, such as a new 
concept or attribute. 
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1 2.1. Data on People and Offices 

2.1.1. Description of the Members of YQT: 

!! Not all members of YQT can profit from this new office space in the 
chateau, about half of the group stay in their old offices. Those that are 
concerned by the new assignment are: 

Werner L. Role = Researcher Project = RESPECT Smoker = No Hacker = 
True Works-with= Angi W., Marc M. 

t Marc M. Role = Researcher Project = KRITON Smoker = No Hacker = 
I True Works-with= Angi W., Werner L. 

 L. Role = Researcher Project = TUTOR2OBO Smoker = Yes Hacker — 
No Works-with = 

Harry C Role = Researcher Project = BABYLON Product Smoker = No 
Hacker = Yes Works-with = Jurgen L., Thomas D. 

Thomas D, Role = Researche r Project — EULlikmoker = No Hacker = 
I No Works-with = Jurgen L., Harry B. 

 

i Ulrike U. Role = secr Smoker = No Hacker — No Works-with = 

Figure 8.2 
Marking up domain terms in the office-assignment material. 

Marking up the protocol In using PC-PACK on the example, we need to use a so-called 
protocol editor to mark-up appropriate words. There are various color-coded markers avail-
able. In Figure 8.2 a snapshot of the protocol editor is shown. For the moment, only the 
concept, attribute, and value markers are used. 

In the introductory material we can markup terms such as "office" and the terms re-
lated to the type of work: head-of-group, head-of-project, manager, secretary, and re-
searcher. These terms are marked as concepts. In addition, individual people and offices 
are marked as concepts. At this stage we are not yet making a distinction between concepts 
and instances. The term "concept" is used here in a sloppy way. 

Markers 
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Other terms can be marked as potential "attributes," such as the project a person is 
working on, whether someone is a smoker, and the size and location of a room. Within 
this tool, the attributes are just identified and not connected to concepts yet. In fact, this 
should really be seen as a first structuring of raw material. An attribute could easily become 
a relation in the final domain schema (e.g., the "project" attribute). 

Finally, some terms can be marked as attribute values. In this scenario example values 
are large, single, and does-noL-smoke, Again, these values might well become full 
concepts in the final schema. 

Sometimes when marking up a protocol there is a need to add small annotations, per-
haps to clarify why a particular marking-up choice was made or to elaborate on a topic. 
PC-PACK's protocol editor supports this by providing Post-it-type annotations for terms. 

Laddering tool PC-PACK contains a tool for performing laddering. The first task in the 
example will be to create a concept tree to form a useful knowledge structure from the 
concepts identified. The resulting diagram is shown in Figure 8.3. First, a hierarchy of 
people, with the management structure and people's roles, has been created by dragging 
and dropping the appropriate lower-level concepts marked up in the protocol. A similar 
method is followed to place all of the room names under the superclass "Offices." 

The next task is to use the laddering tool to structure the attributes elicited from the 
protocol. For this purpose the laddering tool has an "attribute" mode (see Figure 8.4). The 
attributes are represented through a parent node, with possible attribute values as children. 
Not all values may be present as markups in the domain material, but the knowledge analyst 
is free to add additional attributes and values. 

In Figure 8.4 we see five attributes that have been identified: role, smoker, gender, 
size, and location. "Gender" was entered directly by the knowledge engineer. The same 
holds for the attribute "role," which was added to model information also represented in 
the management hierarchy, 

The other attributes stem from markups in the material. For some attributes only one 
value is mentioned in the transcript, e.g., central for the "location" attribute. It is usually 
easy to come up with alternative values through common sense (e.g., non-central). This 
can also be noted as a specific question for the next structured interview ("can you tell me 
what kind of locations you distinguish for rooms?"). This is typical of elicitation: the 
(provisional) knowledge structures the analysts build are subsequently used to focus the 
elicitation of expertise data. 

The newly defined attributes can now be used in the previously defined concept ladder. 
Three attributes (smoker, gender, and role) can be attached to the person concept; the other 
two attributes (size, location) contain information related to offices. 

Card-sort tool The card sort tool supports the concept sorting technique. A snapshot of 
this tool is shown in Figure 8.5. The card sort tool is most effective when sorting an entire 
set of concepts along a new dimension. As an example, we can add a new dimension to the 

ri 

yi 
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Figure 8.3 
A ladder of objects involved in the office-assignment problem. 

knowledge base: hacker. This dimension is suggested by protocol fragment 8a, in which 
the expert considers personal features related to implementing systems. New sorting piles 
must now be elicited for the values of "hacker." These values are does-hack and does - 
not -hack. The result is shown in Figure 8.5. The new dimension is added as an attribute 
to the existing set of attributes. 
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Figure 8.4 
A ladder of objects involved in the office-assignment problem. 

Repertory-grid tool In Figure 8.6 we see a sample grid for the office-assignment task. 
Along the horizontal axis we see a set of concepts within which we want to find some 
new distinguishing features. Along the vertical axis we see a selection of attributes that are 
thought to be relevant to this group of concepts. Not all attributes identified in the laddering 
tool will necessarily be relevant to the grid being constructed. For this example we can use 
smoker, hacker, gender, and role. 

With all the constructs added, you are now ready to begin rating the elements. The 
process of rating each construct is as simple as clicking in the box at the desired point along 
the scale. Using the information from the protocol text, go through the constructs rating the 
values. For binary constructs, such as smoker/nonsmoker, it is usual to give a score at one 
of the poles. However, it can be seen that under certain circumstances, for example, if more 
knowledge were available, binary constructs like smoking can become more continuous, 
for instance, a rating of number of cigarettes smoked per day. For the "role" construct 
a way to rate secretary, manager, head of group, head of project, and researcher must be 
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Figure 8.5 
Using the card-sort tool. The piles suggest a new attribute named "hacker" to be added to the ladder. 

found. In this case the construct is chosen to rate the amount of involvement in research, 
from secretary (no research) through to researcher (only research). 

When all elements have been rated for all four constructs, the repertory grid can be 
displayed, see Figure 8.6. The constructs are plotted against the elements and the score 
given is displayed in the grid. The real power of the repertory grid, however, comes from 
the dendrogram. This part of the diagram, so named because of its resemblance to a tree-
like structure, shows at a glance the similarity hierarchy of both elements and constructs. 
Figure 8.6 for example, shows that Katharina and Uwe are very similar (both females, 
smokers, and hackers), as are Ulrike and Monika (the two secretaries). Eva is also very 
similar to this group, which is not surprising since she is the manager and has a lot in com-
mon with the secretaries. In a dendrogram, the nearer to that diagram that the branches 
join, the more similar the elements (or constructs). Thus we can see that broader groupings 
also exist; for example, the male smokers Andy and Hans form a close subgroup, yet still 
ultimately join up with the largest group of nonsmoking, male, hacker researchers. 

The repertory grid tool appears to elicit similar knowledge to the other tools, the den-
drogram resembling the structure of the personnel hierarchy. However, it is only on the 
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Figure 8.6 
Focused repertory grid. 

constructs and entities that are chosen. The grid updates automatically as these are added 
or removed from the analysis, and this provides a very powerful way to see the effect of 
different attributes on the knowledge model. 

8.5.3 Choosing the Task Template 

We have seen that the most appropriate technique for eliciting knowledge about the reason-
ing process is protocol analysis of a transcript resulting from a think-aloud session, such as 
a self-report. In this scenario we show how we can analyze the self-report of the allocation 
expert to find an appropriate task template. We have classified the task as an assignment 
task. The fact that the task is called "office assignment" already suggests this, but in prac-
tice this is not a guarantee. However, if we look at the definition of assignment (two groups 
of objects, etc.),it is clear that it matches our current application task. Therefore, we can 
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Figure 8.7 
Process ladder. The three inferences of the assignment template (select, group, assign) are defined as PC-PACK 
processes, and can subsequently be used for markups. 

propose the assignment template described in Chapter 6 (cf. Figure 6.20)) as a candidate 
specification of the task and inference knowledge. 

We can now use this template as a coding scheme for the protocol, to find out whether 
the model indeed fits with this application. For this purpose, we have defined the three 
inferences as PC-PACK "processes," which we subsequently can use to mark up the tran-
script. The three process are shown as a process ladder in Figure 8.7. 

In Figure 8.8 we see again a snapshot of the PC-PACK protocol editor. At the right-
hand side of the figure you can see that we now have three "process" markers, respectively, 
for the inferences select-subset, group, and assign. The text fragments marked in this 
figure are all related to the select-subset inference. We can look at a listing of the "select" 
fragments at the bottom. The text fragments marked all concern the order in which the 
assignment process is performed. 

Figure 8.9 shows some additional markups, in this case for the group inference. We 
can see that the text fragments are all concerned with the way researchers are grouped 
together in double rooms. 

It is clear that the protocol provides a good "fit" with the task template. This is suffi-
cient to incorporate the task template for assignment with some confidence into the knowl-
edge model for the office-assignment application. In Figure 8.10 we have included an 
annotated inference structure that can be constructed on the basis of the results of protocol 
analysis. We now have an already quite detailed initial knowledge model and can safely 
continue with completing the knowledge-model specification. 

8.5.4 Further Knowledge Modelling 

Several techniques are useful for detailed knowledge specification. There is a group of 
techniques that can be used to derive rules automatically or manually from domain data. 
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Figure 8.8 
Markups in the transcript, indicating inference steps of the assignment template. The inferences act as a coding 
scheme for the transcript. The markups in this figure are related to the "select" process. 

This technique is known as rule induction. Rule-induction techniques are useful for gen-
erating sample rules for the knowledge bases. and are often applied in an exploratory 
fashion to discover patterns that can be represented with rule types. In addition, these rule-
discovery techniques can be applied in the knowledge refinement phase, when the contents 
of the domain models (= knowledge bases) needs to be completed. 

The subject of rule induction and discovery lies outside the scope of the present work. 
The reader is referred to other sources, such as the PC-PACK documentation, for more 
details on these issues. An alternative method of acquiring rules is to mark them up with a 
tool such as the PC-PACK protocol editor tool. The process of marking up rules is identical 

• 
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Figure 8.9 
Markups in the transcript for the "group" process. 

to marking up concepts, Attributes, and values. In fact, a user can define her own set of 
custom markers. 

8.6 Some Final Remarks 

The problem of knowledge elicitation is a subtle and complex one. This chapter has de-
scribed some of the techniques that are used in this enterprise and indicated where software 
support for the process is becoming available. But we have also sought to provide an in-
dication of the difficulties inherent in doing this kind of work. At present, knowledge 
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the people that still 
need to get an office e.g. all researchers 

any of the remaining 
double rooms, e.g. C5-120 

allocations of offices 
already made to people 

current 
allocations 

Figure 8.10 
Inference structure for assignment together with domain-specific annotations for the office-assignment problem. 

elicitation is itself a form of expertise. Experienced knowledge engineers come to recog-
nize the subtleties of expert thinking They develop skills that allow them to capture an 
expert's knowl Com
monKADS,

the many obstacles they face. Methodologies such as Corn-
monKADS, and suites of knowledge-acquisition software such as PC-PACK, are essential 
means to codify and organize such knowledge-elicitation expertise. 

8.7 Bibliographical Notes and Further Reading 

An excellent review of the psychology of expertise is Chi et al. (1988). Several texts 
provide an overview of elicitation techniques, e.g., Meyer and Booker (1991) and McGraw 
and Harrison-Briggs (1989). The book by Van Someren, Barnard and Sandberg (1993) 
provides a good and practical introduction to the self-report technique. 

The data about the office-assignment problem were provided by Marc Linster (1994). 
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Modelling Communication Aspects 

Key points of this chapter: 

• The communication model specifies the information exchange between 
tasks carried out by different agents. 

• How to construct a communication model step by step, by means of three 
consecutive layers: overall communication plan, individual transactions, de-
tailed information exchange specification. 

• The communication plan describes the full dialogue between two agents. 
• Transactions are the basic building blocks for a dialogue, and act as the 

go-between of two tasks carried out by different agents. 
• Transactions in their turn may consist of one or more messages which are 

detailed in the information exchange specification. Predefined communica-
tion types and patterns allow the buildup of message protocols in a struc-
tured way. 

• Various techniques are available to verify and validate a communication 
model. 

9.1 Role and Overview of the Communication Model 

To become effective, produced knowledge has to be transferred to the various parties that 
use it to perform their own tasks. It is the purpose of the CommonKADS communication 
model to specify the information exchange procedures to realize the knowledge transfer be-
tween agents. Figure 9.1 gives an overview of the main components of the communication 
model and how it relates to the other CommonKADS models. 

In brief, a task that is carried out by one agent may produce results in the form of 
information objects that need to be communicated to other agents. A simple example is 
the basic system-user interaction, where the knowledge system presents reasoning results 



7.  Agent Task 

I/O info objects capabilities 

Communication 
Plan 

Transaction 

identifier/name 

dialogue diagram 
transaction control 

part-of 
I/O info objects 
agents involved 

communication plan 
constraints 

info exchange spec 

part-of 

Information 
Exchange 

Specification 

communication type 
message content 
message control 
info form/medium 

216 Chapter 9 
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Figure 9.1 
Overview of the communication model and how it relates to the other CommonKADS models. 

to the user, or, alternatively, the user provides input data to the knowledge system. The 
description of the agents involved, together with their capabilities, stems from the agent 
model. The tasks, as well as their (input/output) information objects and their assignment 
to the various agents, originate from the task model. If tasks are knowledge intensive, they 
are usually refined in the knowledge model. The latter has a special leaf subtask type called 
a transfer function, indicating that input or output reasoning information has to be obtained 
from or delivered to another agent. 

The key communication-model component describing such communicative acts is 
called a transaction. A transaction tells what information objects are exchanged between 
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what agents and what tasks. It is, so to speak, the go-between of two tasks carried out by 
different agents. Transactions are the building blocks for the full dialogue between two 
agents, which is described in the communication plan. Transactions themselves may con-
sist of several messages, which are then detailed in the information exchange specification. 
This specification is based on predefined communication types and patterns, which make 
it easy to build up message protocols in a structured way. 

Accordingly, the process of constructing the CommonKADS communication model 
goes in terms of three subsequent layers, from global to detailed specifications, as follows 
(see also Figure 9.1): 

1. the overall communication plan, which governs the full dialogue between the agents; 
2. the individual transactions that link two (leaf) tasks carried out by two different agents; 
3. the information exchange specification that details the internal message structure of a 

transaction. 

This chapter explains this stepwise construction process, offers a number of specific 
techniques, and discusses how to verify and validate the communication model. We illus-
trate the main points through an application coming from the energy distribution industry. 

9.2 The Communication Plan 

In constructing the CommonKADS communication model, it is easiest to begin with the 
overall communication plan. The entry point of the communication analysis is: consider 
two agents that carry out a shared or distributed top task. For successful completion, they 
need to communicate and exchange information. The communication plan aims to give 
an overview of all the needed exchanges. Thus, it covers the full top-level dialogue cor-
responding to performing this shared top task. For example, if a knowledge system and 
its human user are the considered two agents, the communication plan gives the human-
computer dialogue — in this case typically consisting of data input, asking or answering 
questions and presentation of reasoning results — associated with a single but complete 
session with the system. 

9.2.1 Constructing the Dialogue Diagram 

Since the entry point of the analysis is a top task distributed over more than one agent, 
it is evident that constructing the communication model crucially depends on information 
from other CommonKADS models. In order to start with communication modelling, the 
following information needs to be available: 

• From the task model, the list of tasks carried out by the considered agent. For the 
communication model, we are interested in the leaf tasks, i.e., those that are not de-
composed further, together with their input/output information objects. 
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Agent A Dialogue Agent B 
(e.g. user) (e.g. system 

Figure 9.2 
The general layout of a dialogue diagram. It forms the central part of the communication plan, as it shows the 
overall information flow related to agent communication. 

• From the knowledge model, the set of so-called transfer functions, that is, leaf nodes 
in the task/inference structure that depend on data from or deliver reasoning results to 
the outside world. (Recall that a task/inference structure in the knowledge model is a 
refinement of a nonleaf, knowledge-intensive task stemming from the task model). 

• From the agent model, the description of relevant agents, with their knowledge (or more 
generally, capabilities), responsibilities and constraints. The communication model 
must be constructed such that it satisfies the ensuing agent requirements, but in its turn 
it may also add requirements for communicative capabilities of an agent. 

This is depicted in Figure 9.1. Thus, normally the knowledge engineer will have al-
ready done a significant part of task, agent, and knowledge analysis, before starting with 
communicating modelling. This also follows by looking at the main steps in constructing 
the communication plan. 

t 
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1. Go through all task-model leaf tasks and knowledge model transfer functions. Make 
a list of all tasks that have input or output information objects that must be exchanged 
with another agent. Do this for each agent. 

2. From this list, identify the set of associated agent-agent transactions. Here, a trans-
action is simply defined as the communication link needed between two leaf tasks 
(including transfer functions) carried out by two different agents. Transactions are the 
basic building blocks of the communication plan. Give each transaction an understand-
able name. Typically, this is a verb-noun combination indicating the communicative 
act performed with the information object (e.g., present diagnostic conclusions to the 
user). 

3. The results of the previous two steps can be conveniently combined in a so-called 
dialogue diagram, where in a single picture we see an overview of all transactions and 
the tasks they are linking for every agent. The general form of a dialogue diagram is 
shown in Figure 9.2. The dialogue diagram presents the complete information-flow 
part of the communication plan. 

4. Finally, the communication plan is completed by adding control over the transactions. 
This may be done in pseudocode or state-transition diagram form. In basic practical 
cases it is often a simple sequence that follows straightforwardly from the information 
flow. But when, for example, exception or outside event handling is involved, a control 
specification is usually needed. 

9.2.2 Control over Transactions 

The dialogue diagram shown in Figure 9.2 is useful for displaying the flow of discourse 
between two agents. But it does not show control. In strongly reasoning-oriented tasks, 
control over transactions is often a quite simple sequence that follows the flow of informa-
tion objects. However, this is not good enough in situations where, for example, external 
events occur that conditionally trigger tasks or transactions. In such cases, we need some 
way to describe control over transactions. In the CommonKADS communication model we 
do this in a conventional way, either by means of some kind of structured control language 
or pseudocode, or by means of state diagrams. 

As these are well-known techniques from software and information engineering, there 
is no need to give a long-winded elaboration of them. For state diagrams in the commu-
nication model we can employ the object-oriented Unified Modelling Language (UML) 
notation. Likewise, Table 9.1 contains the constructs, i.e., basic communication opera-
tors and control constructs, specialized to the communication model. We note that this 
approach to control will be used both for specifying the control over transactions and for 
specifying control within transactions, the internal structure of which may contain differ-
ent messages of different types (as we will see later on in discussing the third layer of the 
communication model). Below we discuss a practical industrial application. 
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Communication 
model 

Specifying control over transactions and messages 

Construct Arguments Description 

SEND (transaction or message) Elementary communication 
operator 

RECEIVE (transaction or message) Elementary communication 
operator 

CARRY-OUT (transaction) SEND/RECEIVE combination 
WAIT-until/while (condition) Represents the null action in 

communication 
PROCESS (task) Part of an agent's tasks outside the 

communication model 
; (transaction-1; transaction-2) SEQUENCE operator, elementary 

control construct (similarly for 
messages) 

REPEAT- 
until/while 

(condition) Elementary control construct 

IF 
THEN 
ELSE 

(condition) 
(transaction-1) 
(transaction-2) 

Elementary control construct 
(similarly for messages) 

& (transaction-1 & transaction-2) AND operator (similarly for 
messages) 

(transaction-1 I transaction-2) CHOICE operator, denoting 
exclusive either/or operation 
(similarly for messages) 

V (transaction-1 V transaction-2) OR operator, denoting 
nonexclusive either/or operation 
(similarly for messages) 

• • Syntactic separators for the control 
specification 

Table 9.1 
Specifying control over transactions and messages in the communication model by means of basic communication 
operators and control constructs in pseudocode form. 

9.3 Case: Homebots — A Multiagent System for Energy Manage-
ment 

9.3.1 Industrial Context 

Due to the deregulation of the European energy market, the electric utility industry is in a 
transition from being a regulated and rather monopolistic power generation industry, to a 
business operating in a dynamic and competitive free market environment. For the utility 
industry a new business paradigm is therefore emerging. The usual business of generating, 
distributing, and billing customers for kilowatt hours — essentially a pure product-oriented 
delivery concept — is being transformed into offering different kinds of new value-added 
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kWh  utility customer 

Figure 9.3 
Paradigm shift in energy utilities due to the new information society: from a pure product delivery concept to 
two-way customer-oriented services. 

customer services (Figure 9.3). These vary from automated metering and billing-at-a-
distance, advice on optimizing energy use, tailored rates and contracts, to home automa-
tion, home energy management, and demand-side management at the customer's premises. 
This paradigm shift will open up new opportunities, but will also necessitate new ways of 
thinking for most utilities, as it requires two-way communication between the utility and 
the customer. Here, utilities are facing the fact that proper utilization of information and 
knowledge is a key component in a competitive market. The traditional power distribution 
net must be supplemented with an information network allowing for extensive two-way 
communication between customers and the utility, in order to provide the new services 
mentioned above. Information and communication technologies (ICTs) are crucial en-
ablers here. 

Recent advances in ICTs have made it technologically and financially possible to equip 
many different types of nodes in the electrical network (including 230V and other sub-
stations, industrial loads and even household equipment) with significant communication 
(230V power grid, radio, cable TV, conventional copper lines, etc.) as well as computing 
capabilities of their own. In this way, nodes in the electrical network will obtain the capa-
bilities to act as intelligent and interacting agents on behalf of the customer and the utility. 
There are quite a number of different advanced information technologies that jointly act as 
enablers here, such as: (a) cheap programmable chips that can be built in into many types 
of equipment; (b) advanced telecommunications technology; (c) knowledge and software 
engineering: object and knowledge technology and multiagent systems; and (d) emerg-
ing facilities and standards for using the power grid (also) as an integrated information 
infrastructure. 

In Sweden, a large project called ISES (Information Society Energy System) has per-
formed research and development for new services based on these recent advances in ICTs. 
One of the new service applications that are foreseen is that the electric network nodes 
themselves act as intelligent agents to take care of energy management. Such intelligent 
agents we call "Homebots" This energy management would lead (a) for the utility, to a 
better utilization of the power grid as a result of reduction of peak (valley) loads of the 
power net; and (b) for the customer, to a minimization of the overall energy cost, while 
maintaining a specified (individual) comfort level. 



A Society of Intelligent Loads: Homebots 

Every load in the system is represented by an intelligent agent (a piece of computer 
software) that buys and sells power on a computational market. 
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Figure 9.4 
Devices and loads are equipped with smart small software programs. These software agents communicate, act, 
and cooperate as representatives assisting the customer, to achieve given goals such as power load management. 

This provides the supplying utility with new opportunities for power load management 
and demand saving in the distribution grid. Better load management and demand saving 
have a significant impact on reducing and postponing investments by utility industries. At 
the same time, they serve the customer's interest, since they allow for cost reduction by 
taking advantage of tailored and more flexible tariffs and client contracts. 

9.3.2 Intelligent Multiagent System Solution 

Existing forms of energy load management are limited to a low number of large facilities 
since manual control still plays an important part. The benefits of multiagent systems for 
load management are a higher level of automation, a much larger scale, and more flexibility 
and distributedness. 

An innovative approach is to achieve dynamic and automatic load balancing by means 
of software agent technology. Devices can now be equipped with communication and 
information-processing capabilities, by supplying them with networked, communicating 
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Computational Market: 
bids at an auction 

Figure 9.5 
Distributed load management is implemented in terms of an auction, whereby software agents representing the 
utility and the customers bid and negotiate to buy and sell power demand. 

microprocessors together with smart software running on top of them, as depicted in Fig-
ure 9.4. In everyday language, it is now technologically possible for software-equipped 
communicating devices to "talk to," "negotiate," "make decisions," and "cooperate" with 
each other over the low-voltage grid and other media. This enables radically new ap-
proaches to utility applications. We use this concept to achieve distributed load manage-
ment in a novel fashion: by a cooperating "society of intelligent devices." Knowledge plus 
communication are the ingredients of intelligence in systems. 

Every device or load, such as heaters, radiators, and boilers in a household, is repre-
sented by a software agent responsible for efficient and optimal use of energy, while taking 
the customer preferences into account. We call these agents Homebots. A key idea is that 
the communication and cooperation between devices for the purpose of load management 
takes the form of a computational market where they can buy and sell power demand. Indi-
vidual equipment agents communicate and negotiate, in a free-market bidding-like manner, 
to achieve energy and cost savings for both the utility and the customer. The market models 
adapted from business, such as auctions, offer promising concepts to automatically manage 
large distributed technical systems. This is a decentralized way to reduce unwanted peak 
loads. 
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Informally, the task distribution over agents is as follows. To begin with, a software 
agent representing the utility (say, at the level of a transformer station) announces the 
start of a load management action to the customer agents (which may represent a smart 
electricity meter in a household or plant, or equipment beyond that such as radiators). For 
example, if its goal is to reduce current energy consumption, it may offer a price or tariff 
different from the usual one. The customer agents then determine to what extent they are 
interested in participating in the load management action. This is based on the customer's 
preferences and is, of course, also changeable and programmable by the customer. On this 
basis, the customer agents prepare bids to sell some power (that is: to postpone or reduce 
energy use) in return for a financial rebate as offered by the utility, cf. Figure 9.5. 

The totality of bids is then assessed in an auction as in a free competitive market. The 
auction results in a reallocation of the available power. In our system, power is treated as 
any resource or commodity that is traded on a market. In a load management action there is 
a certain (limited) supply of it. Both the utility and the customer agents also have a certain 
demand for it, for which they are willing to pay a certain price. How much everyone gets, 
and at what price, is determined automatically in the auction. 

In realizing an auction on the computer, we employ long-established formal theory on 
the functioning of competitive markets, which is available from economic science (espe-
cially from the field known as micro-economic theory). Customer preferences are in this 
framework expressed in terms of so-called utility functions. They represent the value for 
the customer for getting a certain amount of power in a numerical way: the higher the num-
ber, the higher the demand. Due to its rigorous mathematical form, this theory is readily 
adaptable for implementation on a computer. The corresponding algorithms that calculate 
the market equilibrium have been adapted from numerical analysis and optimization (since 
market mechanisms can be reformulated as a kind of optimum search problems). 

Market negotiation and computation continues until a market equilibrium is estab-
lished. This is the case when supply becomes equal to demand in the auction process. 
Then, each participating agent achieves the best possible deal in terms of obtaining power 
use versus spending financial budget. Economic market equilibrium can be shown to corre-
spond to the optimum allocation of available power over all involved equipment agents. No 
agent will then gain any further by buying or selling power, and so the load management 
action as a market process is completed. 

After the auction has been completed, its outcomes — that is, the allocation of power 
corresponding to the market equilibrium — are awarded and communicated to all agents 
involved. Next, the loads are scheduled in accordance with the awarded power over some 
agreed period (say, the next hour). This is implemented through appropriate on/off switch-
ing of the involved loads, whereby telecommunication over the power line will play a role. 
Finally, agreed results as well as implemented outcomes are monitored by all parties, pro-
viding a database of the facts needed in the contracts between utility and customer. This 
whole process is carried out automatically. 

41.1 ,,o,  • I 
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Figure 9.6 
Dialogue diagram of the Homebots system: tasks in the power auction for electricity load management, with their 
communication links. 

9.3.3 Homebots Agent Communication Plan 

This informal task description leads us to a top view of the communication plan in the 
Homebots system in a straightforward way, as seen in the dialogue diagram of Figure 9.6. 
The important transactions, with their input/output information objects, in this announce-
bid-award computational market scheme are the following: 

1. kickoff the auction: sends a trigger signal to the customer agents to commence a load 
management action; 

2. submit the bids: transmits the bids from the customer agents to the auctioneer for 
further processing; 

3. present the awarded power allocation: informs the customer agents about the results 
of the auction; 

4. present the associated real-time schedule: provides the customer agents with the cal-
culated schedule that implements the awarded allocation; 
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Figure 9.7 
Communication plan control in the auction process of the Homebots system in state diagram form. The UML 
state-diagram notation has been used here. 

5. receive the resulting real-time implementation data: transmits the actual metering data. 
This is needed for billing as well as for assessment of the need for further load man-
agement actions. 

For simplicity, we have given the simplest possible task distribution and agent architec-
ture. Other architectures and scenarios are very well possible. For example, it is probably 
preferable to separate the utility agent (representing the interests of the utility) from the ac-
tual auctioneer agent supervising the bidding process. In large-scale applications, customer 
agents will be hierarchically ordered. The initiative of various tasks can also be different. 
In so-called direct load management, the initiative to an auction lies with the utility agent, 
but in indirect load management the customer may take the initiative, though within a pre-
set contractual framework. Also, the scheduling task can be allocated to agents in different 
ways. The computational market approach is very flexible in this respect. Figure 9.6 thus 
only intends to show the basics of a power load management scenario. 

In this basic scenario, control within the communication plan is straightforward, as 
it follows the information flow from the subtasks. The top-level control is shown in Fig-
ure 9.7 with the help of a state diagram. Information about the UML state diagrams can 
be found in Section 14.3. As an notational extension, agent task-transaction pairs are in-
dicated by an ampersand (Announce & Kick-off, Bid & Submit, Award & Present). Only 
the auction part of the load management action has been given in the figure. Generally, a 
state-based representation is convenient, as the formal semantics of agent communication 
languages such as KQML and FIPA-ACL is based upon agent states. 

yi 

yr 
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Figure 9.8 
The components that together specify a transaction in the CommonKADS communication model. 

9.4 Transactions between Agents 

When we have finished the communication plan, we have the agent-to-agent dialogue, in 
terms of the transactions that form the communicative go-betweens linking two tasks. At 
this point, we do have the set of transactions, the related communication flow of infor-
mation objects, and the control over the transactions. However, we have not yet specified 
much about the individual transactions themselves, other than that they have an identifier 
and name stating what their communicative purpose is. Hence, the second layer of the 
communication model contains a description of the properties of individual transactions. 

9.4.1 Specification of Individual Transactions 

The elements needed to specify an individual transaction are shown in Figure 9.8. For the 
specification itself we can use the transaction description (worksheet CM-1) displayed in 
Table 9.2. Most of it is rather self-explanatory. Collecting all this information within a 
single worksheet helps to make the transaction description self-contained, and thus more 
suitable for inspection and review. 

If the communication plan has been properly constructed, some components of the 
transaction description easily follow from the dialogue diagram: in particular the name of 
the transaction, and the agents and tasks it links In addition to a name, it is helpful to give 
a brief explanation of purpose and context of the transaction. The heart of a transaction, 
of course, is transmitting some information object, and this is noted in the worksheet as 
the core information object (as we shall see later on, there may also be auxiliary, noncore 
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Communication model Transaction Description Worksheet CM-1 
TRANSACTION 
IDENTIFIER/NAME 

A transaction is to be defined for each information object that is output 
from some leaf task in the task model or in the knowledge model (i.e., a 
transfer function), and that must be communicated to another agent for use 
in its own tasks. The name must reflect, in a user-understandable way, what 
is done with this information object by the transaction. In addition to the 
name, give a brief explanation here of the purpose of the transaction. 

INFORMATION OBJECT Indicate the (core) information object, and between which two tasks it is to 
be transmitted. 

AGENTS INVOLVED Indicate the agent that is sender of the information object, and the agent 
that is receiving it. 

COMMUNICATION PLAN Indicate the communication plan of which this transaction is a component. 
CONSTRAINTS Specify the requirements and (pre)conditions that must be fulfilled so that 

the transaction can be carried out. Sometimes, it is also useful to state 
post-conditions that are assumed to be valid after the transaction. 

INFORMATION 
EXCHANGE 
SPECIFICATION 

Transactions can have an internal structure, in that they consist of several 
messages of different types, and/or handle additional supporting 
information objects such as explanation or help items. This is detailed in 
worksheet CM-2. At this point, only a reference or pointer needs to be 
given to a later info exchange spec. 

Table 9.2 
Worksheet CM-1: Specifying the transactions that make up the dialogue between two agents in the communica-
tion model. 

information items that have a facilitating role). Furthermore, we indicate the communica-
tion plan of which this transaction is a component. Note that this is of course trivial when 
there is only one communication plan. However, in multiagent systems, for example, there 
might be several communication plans covering different groups and types of agents. 

The worksheet component concerning constraints is used to specify the preconditions 
that must be fulfilled before the transaction can be carried out. This might be various 
things, such as the availability of certain data measurements needed as input, a needed 
agent capability (e.g., sensory capabilities related to sound or vision) when relevant in-
formation comes in a certain form or medium, or the occurrence of an outside triggering 
event as is often the case in real-time embedded systems. Sometimes, it is also useful to 
state postconditions that are assumed to be valid after the transaction. In state adminis-
tration and legal matters, it is usually assumed that "every citizen knows the law" in all 
its often intricate detail, whether this is actually true or not. Likewise, a transaction may 
simply suppose that a transmitted information object is correctly received and processed 
by the receiving agent, without actually asking for an acknowledgment. That this is a non-
trivial postcondition, and therefore worth reflecting about in communication modelling, is 
something we all are familiar with from lost letters in both regular and electronic mail 

The final component of a transaction description is called the information exchange 
specification. Basically, it gives the type, content and form of the message that "packages" 
the information object that is transmitted. In very simple cases, e.g., when only data strings 
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are exchanged between two systems, it can be sufficient to give the content of the message 
as a proposition or predicate statement here. However, it is well possible that a single 
transaction contains more than one message. For example, this occurs in a buying/selling 
negotiation task running between two parties. Then there is one transaction linking the buy 
and sell tasks, but this transaction has an internal structure consisting of a bid-react-rebid 
pattern of messages. Moreover, it is sometimes necessary to be able to state in what form 
or through which medium information in a transaction is conveyed. For all these reasons, 
the information exchange specification is usually not given directly as a basic component 
in worksheet CM-1, but a reference is given instead to a separate (worksheet) description. 
How to describe this detailed information exchange specification is discussed in the next 
section. 

9.5 Detailing the Information Exchange 

After the communication plan and the transaction description, the information exchange 
specification constitutes the third layer of the communication model. It contains the lowest 
level of detail. As such, it provides several important inputs for the design model and 
associated knowledge system implementation, concerning agent communication protocols, 
messages, and human-computer interaction and interfacing. 

9.5.1 Information Exchange Specification 

An information exchange specification refines the transaction description discussed previ-
ously, in two ways. First, it gives the internal message typing and structure of the transac-
tion. Second, it gives syntactic form and medium information about the messages. This is 
done by means of a separate information exchange specification (worksheet CM-2), given 
in Table 9.3. 

Some of the information in this worksheet is already available in the transaction de-
scription, such as transaction name and involved agents. It is mainly incorporated to make 
the specification self-contained, and easier for review and inspection. Also, the core infor-
mation object that is to be transferred is already found in the transaction description. This 
is, however, not the case with the so-called supporting information items. In many cases it 
is helpful to not only transmit the core information object that is needed in the agents' task 
structure but also to facilitate better understanding of the transaction. This can be achieved 
by means of additional explanations, help texts, and the like. This covers, for example, 
traces of how reasoning conclusions were reached by a knowledge system, explanatory 
texts related to complex domain-knowledge items, wizard-like help in answering posed 
questions and retrieving information from other agent sources (e.g., a connected database), 
or system notifications or warnings to the user who is manipulating system information. 
These are all supporting information items, and they are specified as such, including the 
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Communication model Information Exchange Specification Worksheet CM-2 
TRANSACTION Give the transaction identifier and the name of which this information 

exchange specification is a part. 
AGENTS INVOLVED 1. Sender; agent sending the information item(s) 

2. Receiver: agent receiving the information item(s) 
INFORMATION ITEMS List all information items that are to be transmitted in this transaction. This 

includes the (`core') information object the transfer of which is the purpose 
of the transaction. However, it may contain other, supporting, information 
items, that, for example, provide help or explanation. For each information 
item, describe the following: 
1. Role: whether it is a core object, or a support item. 
2. Form: the syntactic form in which it transmitted to another agent , e.g., 
data string, canned text, a certain type of diagram, 2D or 3D plot. 
3. Medium: the medium through which it is handled in the agent-agent 
interaction, e.g., a pop-up window, navigation and selection within a menu, 
command-line interface, human intervention. 

MESSAGE 
SPECIFICATIONS 

Describe all messages that make up the transaction. For each individual 
message describe: 
1. Communication type: the communication type of the message 
describing its intention ("illocutionary force," in speech-act terminology), 
according to Table 9.4 and Figure 9.9. 
2. Content: the statement or proposition contained in the message. 
3. Reference: in certain cases, it may be useful to add a reference to, for 
example, what domain knowledge model or agent capability is required to 
be able to send or process the message. 

CONTROL OVER 
MESSAGES 

Give, if necessary, a control specification over the messages within the 
transaction. This can be done in pseudocode format or in a state-transition 
diagram, similar to how the control over transaction within the 
communication plan is specified. See for this Figure 9.7 and Table 9.1. The 
difference is just the level of detail. 

Table 9.3 
Worksheet CM-2: Specifying the messages and information items that make up an individual transaction within 
the communication model. 

syntactic form and medium through which they are conveyed. Evidently, this is crucial 
information directly related and input to design model, system implementation and user-
interface issues. 

9.5.2 Typing the Intention of Messages and Transactions 

The most characteristic element of our information exchange specification, however, is 
the way in which the messages that make up the transaction are described. The reason is 
that transaction sentences are often composite and convey, in one shot, different types of 
information. 

As an 'everyday example, let us consider the following sentence, viewed as a transac-
tion between two agents: "I'm getting cold, so could you please shut the window?" If we 
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think about it, it becomes clear that this sentence actually consists of several messages that, 
moreover, have a different intent. Specifically: 

1. The first part, "I'm getting cold," is, strictly speaking, no more than a bare information 
or notification message, stating that the speaking agent apparently does not find the 
current temperature comfortable anymore. Note that this notification message does not 
necessarily imply any action on the part of either agent. 

2. In contrast, the second part, "Could you please shut the window?," is directly aimed at 
eliciting activity by the other agent, here in the form of a request for action. 

So, within one transaction sentence, we have two messages here, differing in content 
as well as intent. That this is a rather general situation will be clear upon reflecting about 
variations of the sketched transaction. Take, for example, the alternative sentence: "I'm 
getting cold, why were you so stupid to open the window?" Or consider alternative answers 
to the original question such as "Of course, dear" vs. "I'm watching this world champion 
football match on TV, so why don't you do it yourself?" Note also that in all these cases the 
connective "so" has nothing to do with any form of logical deduction. This is why such 
statements have to be broken down into more than one message. To do otherwise even 
feels very artificial. It is easy to come up with other illustrations that are quite interesting 
from a communication model viewpoint. As an example, we leave it as an exercise to the 
reader to make a communication analysis of the following message: "It's the economy, 
stupid!" 

It goes without saying that the pragmatics of human communication is often quite del-
icate. We believe, however, that considerations like those above are also relevant in the 
modelling of communication where information and knowledge systems are concerned. 
Nowadays, systems that involve multiagent communication, such as information systems 
based on the Internet or the World Wide Web, have to confront such issues. In such sys-
tems, agent communication is often inspired by the so-called speech act theory, which 
distinguishes between the actual content ("locutionary nature") of a speech act or message 
— what is actually being said — and its intended effect ("illocutionary force") upon the 
other agent. 

This distinction is employed in many agent communication models and languages, and 
also in CommonKADS. This can be practically done by associating each message with a 
set of predefined communication types, which must be filled in as indicated in worksheet 
CM-2, cf. Table 9.3. 

A possible set of communication types is presented in Table 9.4. We do not pretend any 
originality here: this set is a basic and simplified version of communication types found in 
various agent communication languages, a currently very active and still changing research 
area. In organizing the communication types, we use two dimensions: the first dimension 
is the purpose of a message — task delegation, task adoption, or pure information exchange 
—, whereas the second dimension indicates the degree of commitment or strength one is 
exerting this purpose. So, in a nutshell one may say that for typing the intention of a 
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Communication 
model 

Predefined communication types 

Task delegation 
Request Require Order Reject-td 

Task adoption 
Propose Offer Agree Reject-ta 

Pure information exchange 
Ask Reply Report Inform 

Table 9.4 
Predefined communication types, used in specifying the intention (intended effect on the receiving agent) with 
which a message is sent. 

message, we have that intention = purpose x commitment. In the table, this leads to 3 x 4 
= 12 predefined basic communication types. The semantics of the communication types in 
Table 9.4 is as follows: 

• Request/Propose: refer to a message sent by an agent that sees a potential for coop-
eration, but wishes to negotiate on the terms of this cooperation. Loosely: "I have an 
interest, but not yet a commitment." 

• Require/Offer: refer to a message indicating that the sending agent already has made a 
precommitment, and intending to prompt the receiving agent for its commitment. This 
type thus denotes a conditional commitment. 

• Order/Agree: the message types indicating that the agent has made a commitment, and 
thus will act accordingly in carrying out its tasks. 

• Reject-td/ta: denote that the agent does not want to commit or cooperate in task dele-
gation (td) or adoption (ta). 

• Ask/Reply: evidently refer to messages that have as intent a query for information from 
another agent, and delivery of such information in return. 

• Report: types a message sent after an agent has acted toward a (previously) agreed-
upon task goal, with the intention of letting the other agent know the status of achieve-
ment (e.g., success, failure, outcome of the action). 

• Inform: refers to a message type that just delivers, provides or presents information 
objects to another agent. It indicates an independent informative action, where no 
previous request or agreement is involved (in contrast to reply or report messages). 

We see that we now have at our disposal a rather rich vocabulary to specify the inten-
tion of messages. (Other, and richer proposals exist in the agent software literature, but the 
present one does cover a wide range of practical knowledge systems.) It is also seen that 
only giving the (propositional) content of messages is very limited, and that additional, 
explicit specification of intention greatly improves the understanding of communicative 
acts. And this is what the communication model aims at. This is further magnified by 
realizing that the above communication types are not only suitable for characterizing sep- 
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Communication type patterns 
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REPORT 

8) 

Figure 9.9 
Library of message patterns, built from the predefined communication types. Branching arrows indicate (exclu-
sive) alternatives. 

arate messages. The communication types lend themselves very well to construct typed 
patterns or chains of messages that naturally belong together. A possible library of such 
patterns, adapted on software agent work done at Daimler-Chrysler, is presented in Fig-
ure 9.9. These communication patterns also constitute a currently very active and open 
agent research area; they are sometimes known as conversation policies. 

Question/answer patterns are a straightforward example occurring in many knowl-
edge systems. Negotiation tasks and associated bidding protocols provide another, more 
complex, pattern. In the following section we show an example of this, relating to our 
market-based program for energy management. 

9.6 The Homebots System Example Continued 

The Homebots system contains several transactions, as discussed above. Some are rather 
simple, especially the transaction linked to the announce task serving to kickoff the auction 
(cf. Figures 9.6 and 9.7). The second transaction, whereby the bids are calculated (bid task 
carried out by the customer agents) and subsequently submitted to the auctioneer, is much 
more interesting. For reasons of space, we only treat this transaction in some detail, see 
Table 9.5. 
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Communication model Transaction Description Worksheet CM-1: Homebots System 
TRANSACTION 
IDENTIFIER/NAME 

Transaction 2: Submit-the-bid: transmits the bids from the customer agents 
to the auctioneer for further processing. The auctioneer then does 
intermediate calculations (of the going price and/or the going allocation), 
and in its turn transmits these to the customer agents to enable bid revision. 

INFORMATION OBJECT Linking the bid and assess tasks: (1) customer bids; (2) intermediate 
auctioneer calculations (going price or going allocation). 

AGENTS INVOLVED Customer agents, sending bids and receiving the going market data; the 
auctioneer agent (in base version identified with the utility agent) receiving 
bids and sending out the going market data. 

COMMUNICATION PLAN Homebots (base version). 
CONSTRAINTS During the transaction a decision procedure (e.g., how often to retry and 

how long to wait) is needed telling what to do when agents do not submit 
bids, as this might be due to a communication failure. A post-condition 
derives from the convergence condition for market equilibrium (e.g., all 
agent bid prices must have become the same). 

INFORMATION 
EXCHANGE 
SPECIFICATION 

see the worksheet CM-2 below. 

Table 9.5 
Worksheet CM-1: The submit-the-bid transaction in the Homebots system. 

We thus see that the submit-the-bid transaction is composite. It is a single transaction 
because it is an exchange link between two tasks, but it handles more than one core infor-
mation object. Both types of agents are problem-solving and reasoning agents, both are 
acting as sender and receiver in this transaction, and both hold part of the overall initiative. 
This is a typical multiagent situation that contrasts with the one usually encountered in con-
ventional knowledge systems. A more detailed specification of the information exchange 
is given in Table 9.6. 

For the control specification of the submit-the-bid transaction in worksheet CM-2, we 
now use the pseudocode format as presented in Table 9.1. The specification is shown in 
Figure 9.10. 

In multiagent systems, transactions related to task adoption and delegation come into 
play. In contrast, conventional knowledge systems that have an advisory function (e.g., 
assessment of housing applications, or diagnosis of technical systems) are characterized by 
the fact that most communication refers to basic information exchange. Core information 
objects are either simply provided or delivered (INFORM message type), or exchanged 
through a question-and-answer pattern (ASK/REPLY communication types). Supporting 
information items such as help and explanation texts belong to a different type, however. 
Since such items are only presented as an open option to the user, the related support 
item messages are typically of the OPFER communication type. Hence, for intelligent 
multiagent systems we indeed need a richer repertoire in communication modelling. 
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Communication Model Information Exchange Specification Worksheet CM-2: 
Homebots system 

TRANSACTION Transaction 2: Submit-the-bid 
AGENTS INVOLVED 1. Sender (customer): bid. 

2. Receiver (auctioneer): bid. 
3. Sender (auctioneer): going market data. 
4. Receiver (customer): going market data. 

INFORMATION ITEMS We have for bids as well as for going market data (price and/or 
allocation): 
1. Role: both are core information objects. No support items are 
defined in this transaction. 
2. Form: both are normally numerical data strings (real). 
Depending on the problem-solving method chosen, they might be 
scalar, or a pair of reals. Several variants are possible, and this has 
an impact on computational efficiency and communication speed. 
3. Medium: not of interest here, as the agent-agent interaction is 
fully electronic within a standard software environment and 
communication protocol. 

MESSAGE SPECIFICATIONS: 
1. BID-MESSAGE 

2. OPT-OUT-MESSAGE 

3. AUCTION-DATA-MESSAGE 

4. NEXT-ROUND-MESSAGE 

Type: PROPOSE 
Content: bid (structure depends on reference theory) 
Reference: market theory. 
From: customer agents 
To: auctioneer 
Type: REJECT-ta 
Content: no further participation in bidding 
From: customer agents 
To: auctioneer 
Type: INFORM 
Content: going market data (see reference theory) 
Reference: theory underlying market protocol 
From: auctioneer 
To: customer agents 
Type: REQUEST 
Content: trigger signal for new round of the auction 
From. auctioneer 
To: customer agents 

Control over messages See pseudo-code specification given in main text. 

Table 9.6 
Worksheet CM-2: The submit-the-bid messages and their communication types in the Homebots system. 
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REPEAT 
WHILE <market convergence condition not satisfied> 

IF <interest in load management> 
THEN PROCESS (bid-task) ; 

SEND (BID-MESSAGE) 
ELSE SEND (OPT-OUT-MESSAGE) 

END-IF 
IF <bids received> 

THEN PROCESS (assess-task) 
ELSE PROCESS (decision sub-procedure [e.g. WAIT... ] ) 

END-IF 
SEND (AUCTION-DATA-MESSAGE) 

SEND (NEXT-ROUND-MESSAGE ) 
END-REPEAT 

PROCESS (award-task) 
( et cetera) . 

Figure 9.10 
Control specification of the submit-the-bid transaction. 

9.7 Validating and Balancing the Communication Model 

Various techniques are available to verify and validate a communication model. We discuss 
some simple but useful ones below. 

9.7.1 Communication Plan Walk-through 

A very straightforward technique to validate a communication model is a communication 
plan walk-through. Walk-throughs are encountered in software engineering at many points 
and in many guises. A walk-through is a form of peer group review: colleagues of the 
responsible knowledge engineer or developer undertake to evaluate the communication 
plan and give their comments back to the knowledge engineer. 

A walk-through is a suitable technique to validate the communication model in an 
early stage, as it is well possible to "mentally simulate" the flow of transactions in a com-
munication plan, and it is helpful that this is done by (relative) outsiders. This procedure 
is useful in order to: 

• check the adequacy of the transaction structure; 
• identify whether the list of information objects is complete; 
• detect the need for additional help or explanation items. 

Different, more or less formal, setups can be used for a walk-through session. One 
possibility is to do it in the form of a prepared meeting, with a starting presentation by the 
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• Present a simple and natural dialogue. 
• Speak the user's language. 
• Minimize the user's memory load. 
• Maintain consistency in terminology. 
• Give feedback about what is going on. 
• Show clearly marked exits from unwanted states. 
• Offer shortcuts for the experienced user. 
• Give help, explanations, and documentation. 
• Provide good error messages. 
• Even better: design to prevent errors. 

Table 9.7 
Nielsen's heuristic evaluation guidelines for usability. 

knowledge engineer, and a round of commentary and discussion, finalized by short formal 
minutes with recommendations from the reviewers. 

9.7.2 The Wizard of Oz 

The "Wizard of Oz" is an experimental technique to validate communication with a knowl-
edge system. In a Wizard of Oz experiment, a human expert plays the role of a (prospec-
tive) knowledge system and mimics its behavior toward an end user. In order to make the 
validation experiment as realistic as possible, the expert and the user sit in separate rooms, 
and communicate with each other only via a computer terminal. 

A Wizard of Oz setup is ideally suited to test the question-and-answer patterns that 
often occur in knowledge systems. In such cases, it is helpful that the relevant parts of 
the task and knowledge models have been developed before, and that the expert's reper-
toire and actions are constrained accordingly. The communication model in the discussed 
Homebots case study may, of course, be tested in a Wizard of Oz setting with nonexperts 
(since even intelligent heaters remain rather dumb systems compared to humans). Alter-
natively, in that case the communication generated by the negotiations could also be tested 
directly by means of mock-up software. 

The Wizard of Oz technique will help to ensure that the end user understands and 
accepts the shared task-inference structures and their knowledge contents. The technique 
is more elaborate than the communication plan walk-through, but has the potential to reveal 
more and deeper information concerning the handling of knowledge by the end users. Note 
also that the technique may be very well used before any system development has taken 
place. 

9.7.3 Engineering for Usability: Heuristic Evaluation 

Clearly, a significant part of the communication model will often be tied in with user- 
interface issues. As this constitutes a whole computer science field in itself, we will not 
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treat these issues here but refer instead to the vast literature on user interface design. Never-
theless, we would like to list a number of heuristics and guidelines presented by Nielsen in 
his book Usability Engineering (1998). His approach is called "heuristic evaluation" of us-
ability. The associated guidelines are shown in Table 9.7. They may, for example, serve as 
a set of evaluation criteria to be used in inspection sessions, like the communication plan 
walk-through discussed previously. Empirical studies have shown that one should have 
several evaluators, and a number of about five seems to give the best cost-benefit ratio. 

9.7.4 Guidelines for Balancing the Communication Model against Other Models 

The relation of the communication model to the other models has been explained in the 
introduction to this Chapter, and is also shown in Figure 9.1. On this basis, we have defined 
a number of rules and guidelines for what the boundaries and connections should be of the 
communication model vis-a-vis the other models. These rules and guidelines are: 

• Leaf tasks from the task model as well as the knowledge model are key inputs to the 
communication model, insofar as they handle information objects that must be ex-
changed between agents. (Such leaf tasks in the knowledge model are called transfer 
functions.) The foremost rule for communication modelling says that a separate trans-
action must be defined for each information object exchanged, and for each distinct 
pair of leaf tasks. 

• The agent model describes the agent capabilities (knowledge), responsibilities, and 
constraints. Check whether these are compatible with the constraints for the transac-
tions in the communication model. It may be that communication requires additional 
capabilities from an agent. If so, add these by revising the agent model. 

• As a double-check, verify whether the communication plan is compatible with struc-
ture, power/culture, process, and resources in the organization model. 

• The rule of structure-preserving design in the design model also holds for the com-
munication model constructs, in the same way as it holds for the knowledge-model 
structure. 

• A borderline case between the design and communication models are the syntactic 
form and media aspects of information items in the detail information exchange spec-
ification. They might belong to either one. The demarcation criterion is that if there 
is an intrinsic conceptual reason that information items take on a certain form or are 
carried by a certain medium, this is to be modelled in the communication model. Oth-
erwise, it is a matter of implementation choice, as a consequence of which it belongs to 
the design model. For example, some information objects "must" come with a certain 
form or medium. For example, a signature authorizing a purchase or expense might 
not be considered legally valid if it is given in electronic form. Such a constraint is part 
of the communication model. The general rule is to model form and media aspects in 
the design model, unless there is a good conceptual reason not to. 

"-WO r err 
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1. Identify the core information objects to be exchanged between agents. Do 
this by checking, for each agent, the list of leaf tasks from the task model 
and the knowledge model (the transfer functions). 

2. Identify the associated list of transactions, as exchange links between two 
tasks, and give each transaction a suitable, i.e., user-understandable, name. 

3. Now, construct the dialogue diagram so that you have a pictorial overview of 
the overall communication plan. If needed, add a specification of the control 
over the transactions. This yields a complete communication plan. 

4. Describe all individual transactions, following the format given in Figure 9.8 
and worksheet CM-1. 

5. Describe the internal structure of each transaction where necessary, by filling 
in the information exchange specification according to worksheet CM-2. 

6. Validate and balance the communication model according to the techniques 
and guidelines given. 

Table 9.8 
Steps in communication-model construction. 

• Decisions as to what supporting information items to introduce belong to the commu-
nication model, and not to the design model, because they are a matter of user task 
support, not system implementation. 

9.8 A Structured Process for Communication Modelling 

We have outlined how the communication model specifies the information exchange be-
tween tasks carried out by different agents. It is constructed stepwise by means of three 
consecutive layers: overall communication plan, individual transactions, and detailed in-
formation exchange specification. The communication plan describes the full dialogue 
between two agents. Transactions are the basic building blocks for a dialogue, and act as 
the go-between for two tasks carried out by different agents. Transactions in their turn may 
consist of one or more messages which are detailed in the information exchange specifica-
tion. Predefined communication types and patterns, features familiar from agent commu-
nication languages, allow the buildup of message protocols in a structured way. We have 
shown how to break down communication modelling into natural steps, and for all steps 
in communication modelling we have presented simple and practical techniques such as 
worksheets and diagrams. So, we have outlined how the specification of agent commu-
nication is approached in CommonKADS as a structured analysis process, necessary for 
building quality system applications. 

As a summary, we list in Table 9.8 the guidelines for communication model develop-
ment laying out the various activities that need to be undertaken by the system developer: 
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9.9 Bibliographical Notes and Further Reading 

The growing capabilities of electronic communication such as the Internet and the World 
Wide Web currently have a strong influence on developments in knowledge engineering 
and management. There is increased attention for distributed enterprises and associated 
information-system applications, exemplified in new concepts such as virtual organiza-
tions, chain management, information and knowledge sharing, distributed intelligence, in-
telligent agents, and multiagent technology. These developments try to come to grips with 
the fact that knowledge processes are becoming more and more inherently distributed. 

In the software world, this leads from large and relatively monolithic information and 
knowledge systems to relatively independent interacting software agents. A recent collec-
tion on software agents can be found in Bradshaw (1997). Modelling of communication 
in intelligent agent systems is of prime importance, but significantly more complex than in 
conventional knowledge systems. Bradshaw's book contains a chapter on the KQML agent 
communication language referred to in this chapter. The mentioned Daimler-Chrysler work 
on communication in distributed intelligent systems is found in Haddadi (1995). The orig-
inal version of the CommonKADS communication model was developed by Waern et al. 
(1993) for conventional knowledge systems; the report contains a good case study of a 
conventional single-system/single-user expert system for diagnosis of telecommunication 
equipment in the field. The version of the CommonKADS communication model expanded 
to intelligent multiagent systems presented in this chapter was developed by Akkermans 
et al. (1998). More information related to the Homebots case study is found elsewhere 
(Akkermans et al. 1996, Ygge 1998). 



10 
Case Study: The Housing Application 

Key points of this chapter: 

• We illustrate the use of the CommonKADS analysis models in a simple 
application. 

• The domain concerns the assignment of rental residences to applicants. 
• The knowledge-intensive task we focus on concerns assessing whether an 

applicant satisfies the criteria for a certain residence. 
• We show parts of the organization, task, agent, knowledge, and communi-

cation models developed for this application. 

10.1 Introduction 

In this chapter we describe a small case study to illustrate the analysis models and methods 
discussed so far. The case study concerns a domain in which rental houses are assigned to 
applicants. A short description of this domain is given in in the next section. 

10.2 Application Domain: Rental Residence Assignment 

In the Netherlands rental residences are allocated by the government to people in need of 
a residence. Residence distribution is done by the local government. People that want to 
rent a residence have to register as a potential "applicant." Every two weeks a magazine is 
published which contains a listing of residences for which registered applicants can apply. 
There is a published procedure for deciding which applicant will get the residence (mainly 
based on the length of time people have been waiting). A summary of the key figures 
related to residence assignments is published in the next magazine. This information can 
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Allowed income for a single-person household 
Up to 22 years 23-64 years 65+ years Rent 
fl. 0-27,999 fl. 0-24,999 fl. 0-21,999 Less than fl. 545 
fl. 28,000-31,999 fl. 25,000-29,999 fl. 22,000-24,999 Less than fl. 750 
fl. 32,000-35,999 fl. 30,000-34,999 fl. 25,000-28,999 Less than fl. 1047 
fl. 35,000 44,999 
et cetera 

fl. 35,000-44,999 fl. 29,000-44,999 Fl. 600 or more 

Table 10.1 
Part of the table that indicates the relation between rent and income. 

be used by applicants to adapt their application strategy (e.g., by applying next time for a 
house in a less popular area). To be eligible for a residence, applicants have to satisfy a 
number of criteria. There are four types of eligibility criteria. First, people have to apply for 
the right residence category. Second, the size of the household of the applicant needs to be 
consistent with requirements on minimum and maximum habitation of a certain residence. 
The third criterion is that there should be a match between the rent of the residence and 
the income of the applicant. Table 10.1 shows some sample rent-income criteria. Finally, 
there can be specific conditions that hold for one particular residence. 

Currently, assessing whether applicants satisfy these criteria is done manually by civil 
servants of the local government. This manual checking takes a lot of time, and you are 
asked to develop a system for automatic assessment of residence applications. Input to the 
system are the data about a particular application: data about an applicant and a residence. 
The system output should be a decision about whether the application is in line with the 
criteria yes or no. The system has to communicate with a database system containing data 
about residences and applicants, and with another program that computes a priority list of 
applicants for each residence. 

10.3 Organization Model 

In this section we describe the organization model by going though the sequence of work-
sheets. 

10.3.1 OM-1: Problems, Solutions, and Context 

Table 10.2 shows the first worksheet 0M-1, which lists the perceived organizational prob-
lems, characterizes the organization context (which for the purpose of the current analysis 
is assumed to be invariant), and provides a list of possible solutions. 

Two problems are listed: (1) the fact that assessment of individual residence applica-
tions takes too much time, and (2) the fact that there is not enough time to handle urgent 
cases, for which specialized rules and regulations apply. It seems normal to think that 
there is some causal connection between these two problems, and that solving one will 
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Organization Model Problems and Opportunities Worksheet OM-1 
PROBLEMS AND 
OPPORTUNITIES 

* Assessment of individual applications takes too much time 
* There is not sufficient staff for handling urgent cases 

ORGANIZATIONAL 
CONTEXT 

Mission: 
* Enable people to take as much as possible themselves responsibility for 
finding a suitable home. 
* Enable insight into the dynamics of the rental housing market 
External factors: 
* Local council. 
* National regulations. 
* Applicants / public opinion. 
* Rental agencies. 
Strategy: 
* Provide high quality for a reasonable price. 
* Move to (semi-)private service company. 
* Broaden scope, e.g., include lower segment of privately owned 
residences. 

SOLUTIONS Solution 1: 
* Develop an automated system for application assessment 
* Set up a training program for a group of assigners to specialize in urgency 
handling 

Table 10.2 
Worksheet 0M-1: Problems, organizational context, and possible solutions. 

thus also solve the other. This is in practice often dangerous. For example, if the first 
problem is solved through automation, it might be the case that the human resources that 
become available do not have the skill to carry out the other task. The solution listed on the 
worksheet is typical in the sense that it does not consist of a single item (building a soft-
ware system), but combines software development with organizational measures (training 
personnel, creating new organizational roles, reorganizing the business process). 

Although often a project is initiated with a particular target system already in mind 
(in this case a system for automatic assessment of residence applications), it is useful to 
make an explicit note of the problems the system is supposed to solve, and also to look at 
possible alternative solutions and other measures. As we see in this worksheet, the solution 
proposed is in fact a "package" of which the software system is just one element. This is 
typical of many projects. 

The second row of worksheet 0M-1 describes the organizational context. These ele-
ments are assumed to stay the same during the project at hand. This means that we assume 
that the mission and goals of the organization are fixed as far as the project is concerned. It 
might well be that the project comes to conclusions which could affect the organizational 
goals, but this process lies outside our current scope. The mission and goals in this case 
study reflect the fact that this organization is a recently privatized department of the local 
administration and is moving in the direction of a "real" business. The people working in 
the organization used to be civil servants. 
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Organization Model Variant Aspects Worksheet OM-2 
STRUCTURE See Figure 10.1. 
PROCESS See Figure 10.2. 
PEOPLE See Figure 10.1: roles of people are specified for each part of the organization 

structure. 
RESOURCES Database: existing database of applicants and residences. 

Priority calculator: program for computing a priority list of applicants for a 
residence. 

KNOWLEDGE Assessment criteria: knowledge for judging correctness of individual 
applications (e.g., rent-income table). 
Assignment rules: knowledge used for selecting an applicant for a particular 
house. 
Urgency rules: special rules and regulations for urgent cases (e.g., handicapped 
people). 

CULTURE & POWER * Hierarchical organization. 
* Employees view the future with some trepidation. 
* Management style is still based on history as civil servant department. 

Table 10.3 
Worksheet OM-2: Variant aspects of the housing organization. 

OM-2: Description of Focus Area in the Organization The second worksheet de-
scribes the part of the organization on which the project focuses. The worksheet contains 
six slots. The first two slots, "structure" and "process," are usually best shown in a graphi-
cal way. 

Figure 10.1 shows the current organization structure. This figure combines the "struc-
ture" slot with the "people" slot, indicating the roles of people in the organization. In many 
organizations the roles of people are tightly connected to their physical position: in such 
cases this kind of combination makes sense. Here we see that the organization is struc-
tured in a hierarchical fashion. The directorate forms the top level of the hierarchy. There 
are four departments. The "public service" department is responsible for producing the 
bi-weekly magazine, as well as answering questions of the public. The "residence assign-
ment" department carries out the actual assignment work. This assignment work can be 
split up into two parts: standard cases and urgent cases. The computer department main-
tains the databases and other software. The policy department assists the directorate in the 
formulation of the long-term policy of the organization. 

Figure 10.2 shows the main business processes in the organization. As in the social 
security domain (cf. Chapter 3) we distinguish a primary process and a secondary process. 
The primary process is responsible for delivering the "product" (in this case an assignment 
of a residence); the secondary process describes support activities for the primary pro-
cess. Such a division into primary and secondary is probably useful in many application 
domains. 

The primary process in this case study consists of four steps. The process is carried 
out in bi-weekly cycles. First, a magazine is produced which is distributed to the public 
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Figure 10.1 
Structure and people in the current situation. 

and which contains the available residences in a particular cycle as well as the results of 
the previous cycle. Second, incoming applications (e.g., through posted paper forms) are 
entered into the database. This data-entry task performs a check on whether the registration 
number of the applicant and the number of the residence are indeed valid numbers. The 
third task looks at each individual application and checks whether the applicant is applying 
for a residence she is entitled to (see the criteria described at the beginning of this chapter). 
This assessment task is responsible for the first problem mentioned in-worksheet 0M-1. 
Finally, the available residences are assigned to one of the correct applications for this 
house. 

Guideline 10-1:  CONSIDER SPLITTING THE BUSINESS PROCESS INTO AT LEAST 
TWO SUBPROCESSES: A PRIMARY PROCESS AND A SECONDARY PROCESS 
Rationale: Most organizations have one (or more) main processes that deliver the product 
(this could be something physical like a car, but can also be a service) and some other 
"support" processes, such as training, evaluation, and so on. 

CommonKADS does not prescribe a fixed graphical notation for the figures con-
structed in the course of organizational analysis. In Figure 10.2 the UML notation for 
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Figure 10.2 
Primary and secondary business processes in the current situation. The notation used is that of a UML activity 
diagram. 

activity diagrams is used. Unless you have your own favorite, this is probably a good 
default notation standard. 

The other entries in worksheet OM-2 contain information about resources, knowledge 
as well as culture and power. Some relevant existing computer programs are listed as 
resources. Three types of knowledge are listed: these are further detailed in worksheet 
OM-4. The short description in the "culture & power" slot provides hints about the working 
and management style. 

10.3.2 OM-3: Main Tasks in the Business Process 

In this worksheet we describe the main tasks that appeared in the "process" slot in OM-2. 
We have limited the tasks in this worksheet to the tasks in the primary process of Fig-
ure 10.2. As we see, two of the four tasks are knowledge intensive, namely the assessment 
and the assignment task. For each task we also indicate its significance. It is worthwhile to 
note that "significance" is an elusive concept and hard to quantify. A typical quantitative 
yardstick is the workload of a task, as can be seen in the social-security case in Chapter 3. 
However, most of the time we have to be content with a qualitative estimate, such as a five- 
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Organization Model Process Breakdown Worksheet OM-3 
No. TASK PER- 

FORMED 
BY 

WHERE? KNOWL- 
EDGE 
ASSET 

INTEN- 
SIVE? 

SIGNIFI-
CANCE 

1 Maga- 
zine 
produc- 
tion 

Magazine 
editor / 
magazine 
producer 

Public 
service 

No 3 

2 Data 
entry of 
applica- 
tions 

Data typist / 
automated 
telephone 
number 

Residence 
assignment 

No 2 

3 Applica- 
tion 
assess- 
ment 

Assigner Residence 
assignment 

Assessment 
criteria 

Yes 5 

4 Resi- 
dence 
assign- 
ment 

Assigner Residence 
assignment 

Assignment 
rules 
Urgency 
rules 

Yes 5 

Table 10.4 
Worksheet OM-3: Process breakdown. 

point scale. Here, we see that the two knowledge-intensive tasks also score high in terms 
of significance. This is an indication that is useful to consider automation of the task. 

10.3.3 OM-4: Knowledge Assets in the Housing Domain 

The fourth worksheet gives a short description of the main knowledge assets in the part of 
the organization we are focusing on. In the housing case three knowledge assets are listed 
(see also OM-2). The first knowledge asset concerns knowledge about assessment criteria 
for applications. The main issue concerned with this asset refers to its form: we would like 
to have it in electronic form in order to make it available for automation. The knowledge 
concerning assignment rules has no associated problems. This is not a surprise, because it 
is possessed by a program that uses this knowledge. 

The knowledge concerning urgent cases is apparently the most difficult to get a grip 
on. The reason for this is that it consists of rules and regulations from different sources 
at different periods in time. Also, the criteria and definitions used are open to interpreta-
tion. The project we describe here has refrained from tackling a task in which this type 
of knowledge is featured. However, in a future project it might useful to develop this type 
of knowledge, e.g., to increase its quality. Worksheet OM-4 is a typical focus point for 
knowledge-management activities in which we are interested in describing knowledge at 
a coarse-grained level and defining strategies for knowledge development and distribution 
in the organization (see also Chapter 4). 
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Organization Model Knowledge Assets Worksheet OM-4 
KNOWL- 
EDGE 
ASSET 

POS- 
SESSED 
BY 

USED IN RIGHT 
FORM? 

RIGHT 
PLACE? 

RIGHT 
TIME? 

RIGHT 
QUALITY? 

Assess- 
ment 
criteria 

Assigner 3. Applica- 
tion 
assessment 

No: 
paper-form 
—+ 
electronic 

Yes Yes Yes 

Assign- 
ment 
rules 

Priority 
calculator / 
assigner 

4. 
Residence 
assignment 

Yes Yes Yes Yes 

Urgency 
rules 

Assigner 4. 
Residence 
assignment 

Yes Yes Yes No: often 
incom- 
plete, 
ambigu- 
ous, 
inconsis-
tent 

Table 10.5 
Worksheet OM-4: Knowledge assets. 

10.3.4 OM-5: Judging Feasibility 

In the final worksheet OM-5 we indicate the feasibility of potential solutions for perceived 
organizational problems. The worksheet for the housing application describes the feasibil-
ity of the solution we proposed in worksheet 0M-1, namely automating the application-
assessment task plus retraining staff. When discussing business feasibility it is often dan-
gerous to expect large paybacks in terms of cost reduction. Even if a system saves labor 
effort, it might well be that from a social perspective it will be impossible to fire people. It 
is usually more realistic to use the knowledge system for quality improvement. 

In the housing case the technical feasibility appears to be high, mainly because as-
sessment problems are well understood and the knowledge is already present in an explicit 
(paper) form. For the project feasibility you have to carefully consider the availability of 
the required software-development expertise. In particular, the availability of the expert is 
often an important bottleneck to consider. In the housing case this appears (luckily) not to 
be a problem. 

All in all, the proposed solution is judged to be feasible provided it is backed by people 
in the organization. Therefore,the first action proposed is to inform the staff involved of 
the plans and to elicit their explicit support. Such actions depend of course on the local 
traditions, and in this case might be typical of the "consensus" culture in the Netherlands. 
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Organization 
Model 

Checklist for Feasibility Decision Document: Worksheet OM-5 

BUSINESS 
FEASIBILITY 

Automation of the application assessment will cost approximately $150,000 for 
development costs and $10,000 per year for maintenance. This investment is 
cost-effective if we assume that fewer than three persons will be needed to do 
the application-assessment work. From a human-resource management 
perspective it would be best if most of these resources (say two persons) would 
get a different type of job with the explicit purpose of working on existing 
bottlenecks in the organization, in particular urgency handling. The net cost 
reduction of one person is easier to "sell" to the staff, but means also that 
payback time will be longer. Also, additional costs such as training costs will 
have to be taken into account. The investment will provide a higher quality if 
we assume the program will make fewer errors than the humans. This is 
important for the public image of the organization. 

TECHNICAL 
FEASIBILITY 

Assessment tasks are well understood. Many existing system tackle this task 
type. The knowledge needed for assessment is explicitly available. 

PROJECT 
FEASIBILITY 

There is no real "expertise" is this domain. This minimizes the well-known risk 
of the limited availability of the expert. Skills needed on the project team are: 
experience in building an assessment application, knowledge about the 
database, and knowledge about the priority calculator. 

PROPOSED 
ACTIONS 

* Set up a project team and a schedule for system development. 
* In parallel: start with the required organizational changes, namely training 
assigners as "urgency handler". 
* But first: liase with the residence-assignment and computer departments to 
get their support for the proposed new organization structure. 

Table 10.6 
Worksheet OM-5: Feasibility of the solution "automation of the application-assessment task in combination with 
retraining staff for urgency handling". 

10.4 Task Model 

Assuming we have decided that solution 1 in worksheet 0M-1 is feasible, the task model 
(TM) explores the "application-assessment" task in more detail. The task model has two 
associated worksheets. The first one enables us to do a first task analysis of the task we are 
focusing on. The second worksheet takes a closer look at the knowledge involved in the 
this task. 

10.4.1 TM-1: First Task Analysis 

Worksheet TM-1 in Table 10.7 contains a description of application assessment. The de-
scription is at a more detailed level than in the organization model. In the task model we 
are "zooming in" on a task. We describe both the internals of a task (control information, 
data manipulated), as well as external information such as the goal of the task, performance 
requirements, quality criteria, and constraints. The worksheet lists some typical examples 
of task information for the assessment task. 
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Task Model Task Analysis Worksheet TM-1 
TASK 3. Application assessment 
ORGANIZATION Primary business process; carried out in the residence-assignment department 

by the assigner. 
GOAL AND VALUE This task should ensure that applicants are treated in a fair and equal manner. 

The task is essential to delivering the assignment service at the required quality 
level. 

DEPENDENCY AND 
FLOW 

Input tasks: 1. Magazine production; 2. Data entry 
Output tasks: 4. Residence assignment 

OBJECTS HANDLED Input objects: Application, data about residences and applicants 
Output objects: Validated application 
Internal objects: — 

TIMING AND 

CONTROL 

Carried out for every application delivered by the data entry task Each time a 
new application is received from data entry, this task can be carried out. The 
residence-assignment task for a certain residence can only be carried out if the 
assessment task has validated all applications for this residence. Applications 
that fail the validation test can be thrown away without notification of the 
applicant. It would be good to keep a log of all task activations plus a summary 
of the results. 

AGENTS In the new situation: knowledge system 
KNOWLEDGE AND 
COMPETENCE 

Assessment criteria 

RESOURCES 
QUALITY AND 
PERFORMANCE 

The task is not time-critical, but it is expected that assessment will be quick (at 
most a few seconds). System availability should be at least 95%. In case the 
system is not available, the applications that need to be validated should be 
placed in a queue. 

Table 10.7 
Worksheet TM-1: First analysis of the application-assessment task. 

Often, we can link in relevant analysis descriptions made for other applications. For 
example, Figure 10.3 and Figure 10.4 show respectively a data-flow diagram and a state-
transition diagram that have been taken from prior system-development work in this do-
main. Also, existing database schemas are often useful to link in here. The database 
schema for the database of applicants and residences is shown in the section on knowledge 
modelling (see Figure 10.6). 

10.4.2 TM-2: Knowledge Bottleneck Identification 

In the task model we also take a closer look at the knowledge assets involved in the task. 
Worksheet TM-2 is used for this purpose. In this worksheet we characterize the nature of 
a knowledge asset in terms of a number of attributes related to nature, form, and availabil-
ity of the knowledge. Table 10.8 is an instance of this worksheet for the knowledge asset 
"assessment criteria." We see that the nature of this type of knowledge is formal and/or 
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Figure 10.3 
Data-flow diagram for the main processes, data flow and data stores of the application-assessment task, as well 
as directly related tasks. 
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Figure 10.4 
State diagram for the main flow of control during a single execution of the application-assessment task and the 
preceding "data-entry" task. 
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Task Model Knowledge Item Worksheet TM-2 
NAME 
POSSESSED BY 
USED IN 
DOMAIN 

Assessment criteria 
Assigner / knowledge system 
3. Application assessment. 
Government rules and regulations 

Nature of the knowledge Bottleneck / to be improved? 
Formal, rigorous X 
Empirical, quantitative 
Heuristic, rules of thumb 
Highly specialized, 
domain-specific 

X 

Experience-based 
Action-based 
Incomplete 
Uncertain, may be 
incorrect 
Quickly changing X X 
Hard to verify 
Tacit, hard to transfer 
Form of the knowledge 
Mind 
Paper X 
Electronic 
Action skill 
Other 
Availability of knowledge 
Limitations in time 
Limitations in space 
Limitations in access 
Limitations in quality 
Limitations in form X X 

Table 10.8 
Worksheet TM-2: Knowledge asset characterization plus identification of bottlenecks. 

rigorous, highly specialized, and quickly changing. The form of the knowledge is paper. 
This is in itself not a problem (the paper description is in fact quite precise and unambigu-
ous), but if we look at availability we see that there is a problem connected with the form. 
We would like to have the knowledge in electronic form so that it can be made available to 
a computer program. Finding bottlenecks is a central issue in knowledge analysis at this 
course-grained level. Improving bottlenecks related to knowledge is what really helps an 
organization. Bottlenecks are thus a focus point for all knowledge-management activities. 

The worksheet acts as a checklist. For example, the fact that the assessment criteria 
have the feature "quickly changing" was something not mentioned before. The worksheet 
help us in asking the right questions in an interview. 
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Agent Model Agent Worksheet AM-1 
Name assigner 
ORGANIZATION Residence-assignment department, plays role in the primary business 

process. 
INVOLVED IN 3. Application assessment 

4. Residence assignment 
COMMUNICATES WITH Database: data of applicants and residences 

Priority calculator: software program that supports residence assignment 
Rental agencies: companies that actually rent out the residence 

KNOWLEDGE Assessment criteria 
Assignment rules 
Urgency rules 

OTHER COMPETENCES Ability to handle problematic cases (often related to urgency). 
RESPONSIBILITIES AND 
CONSTRAINTS 

Make sure people are treated equally (no favors). This has been a problem 
in the past. 

Table 10.9 
Worksheet AM-1: The "assigner" agent. 

10.5 Agent Model 

As was remarked in Chapter 3, the agent model does not add much new information to the 
stuff already contained in the organization and task models. The agent model reorganizes 
the information so that we can look at it from the perspective of the agents involved. The 
agents will eventually have to do their (new) jobs in the organization. The success of 
the system depends on their willingness and ability to cooperate. In Table 10.9 we see 
worksheet AM-1 for the "assigner" agent. This is the human role in the organization most 
affected by the proposed solution. Her work is likely to change dramatically. Information 
added to this worksheet relates mainly to the skills and competencies required for the agent. 
In this case we see that social skills are required, in particular for handling the urgent cases. 
Given the proposed organizational changes, there will be more need for such in the future. 

10.6 Summary of Proposed Solution and Its Effects 

We complete the context analysis with filling in worksheet OTA-1, which summarizes the 
proposed organization changes, improvements, and actions. The worksheet for the housing 
case is shown in Table 10.10. 

10.7 Knowledge Modelling 

We use the process model of Chapter 7 to describe how the knowledge model of the hous-
ing application was constructed. We consider identification, specification, and refinement 
activities in sequence. 
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Organization, Task, 
Agent Models 

Checklist for Impact and Improvement Decision Document: 
Worksheet OTA-1 

IMPACTS AND CHANGES 
IN ORGANIZATION 

1. A new software agent is introduced into the organization. This agent (the 
knowledge system) is expected to take over the bulk of work related to task 
3 "application assessment". The knowledge system will need to be 
integrated with two other software agents: the applicants/residences 
database and the priority calculator. 
2. A new human role "urgency handler" is created. 

TASK/AGENT-SPECIFIC 
IMPACTS AND CHANGES 

1. Assigners may have to do other work. Define how much work is saved, 
and how much additional effort for urgency handling will/should become 
available. 
2. The computer-support group will get more responsibility. 

ATTITUDES AND 
COMMITMENTS 

Management thinks the changes will be received positively by the agents 
whose work changes. This has to be verified though interviews and/or other 
means. 

PROPOSED ACTIONS 1. Propose preliminary plan for full development. 
2. Conduct interviews with agents affected by the new situation and define 
accompanying measures in case of negative attitudes. Reconsider the 
project if there is a negative attitude among these agents. 
3. Select staff for retraining as "urgency handler". 
4. Plan the training program. 

Table 10.10 
Worksheet OTA-1: Summary of organizational changes, improvements, and actions. 

10.7.1 Identification Activity: Domain Familiarization 

A number of information sources were scanned. In this case, the written information turned 
out to be extremely helpful. The reason for this was that one of the goals of the new 
business process for residence assignment was to make it as transparent as possible to the 
public. People should be able to see which criteria were applied. The bi-weekly magazine 
with the available houses also contained an explicit description of the assessment criteria 
and of the full procedure. Additional sources of information were a few transcripts of 
interviews with assigners and a document describing information about urgent cases. 

10.7.2 Identification Activity: List Potential Model Components 

From the task point of view we have to look at templates for the assessment task. The 
template described in this book (see Chapter 6) is of course a candidate, but there are also 
others. For example, the CommonKADS library book (Breuker and Van de Velde 1994) 
contains a chapter on assessment models. 

From the domain point of view we can get information from the existing database of 
residences and applicants. The data model of this database is a candidate for (partial) reuse. 
This also simplifies the realization of the connection between the assessment system and 
the database. 
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10.7.3 Specification Activity: Choose Task Template 

For the housing application we chose the task template for assessment described in Chap-
ter 6. There are two reasons for this choice: 

1. The inference structure appears to fit well with the application. A good technique for 
establishing such a fit is to construct an "annotated inference structure." An example is 
shown in Figure 10.5. The dynamic roles have been annotated with application-specific 
examples. We see that the role "norm" can be played by a "rent-fits-income" criterion. 
The knowledge needed for the evaluation of this norm can be found in the decision 
table (cf. Table 10.1). If it is easy to find examples that cover the domain well, the 
chances are high that the template is useful. One can see it as a hypothesis that needs 
to be verified in the remainder of the knowledge-modelling process, e.g., by filling the 
static knowledge roles and simulating the knowledge model. It can be the case that the 
inference structure needs some adjustment. For example, in the housing application 
we need an additional input for the evaluate inference, because it turns out that there 
are sometimes special rules connected to a particular residence. This addition is shown 
as a shaded area in Figure 10.5. In most domains some tuning of the task template is 
necessary. 

2. A second reason for choosing the task template of Chapter 6 is that it already con-
tains a domain schema. This schema gives us a head start in domain modelling. In 
general, it can be said there are still considerable differences between the available 
reusable components. These concern scope, level of detail, and formality. Although 
there is a considerable research effort in arriving at standard descriptions, this is still 
something for the future. For the moment the knowledge engineer has to cope with a 
heterogeneous set of reusable components. 

10.7.4 Specification Activity: Construct Initial Domain Schema 

As suggested by a guideline in Chapter 7, this activity should be carried out in parallel with 
the previous one to ensure that the "task" view does not bias the "domain" view too much, 
and vice versa. For the initial domain conceptualization the data model of the existing 
database turned out to be the major source of information. 

Residences and applicants In the housing domain, we find two central object types 
which can be modelled with standard data-modelling techniques, namely residence and 
applicant. Both can be specified through a concept with a collection of attributes. Fig-
ure 10.6 shows these two concepts graphically. The value types for attributes can be cho-
sen from the predefined list (see the appendix), but one can also define a customized value 
type. The definition below is an example of a value-type specification for the attribute 
household-type of the concept applicant (see Figure 10.6). 
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case 

abs ract 

raw data about a residence 
and an applicant 

e.g. age, income, rent 

applicant is either e.g rent-fits income = true (or false) 
eligible or not eligible 

for the residence 

Figure 10.5 
Annotated inference structure for the residence-assessment problem. The shaded area is an addition needed for 
this application. The rest is taken directly from the task template for assessment. 

VALUE-TYPE household-type-value; 
TYPE: NOMINAL; 
VALUE-LIST: {single-person, multiple-persons}; 

END VALUE-TYPE household-type-value; 

The TYPE slot indicates whether or not an ordering is assumed on the values in the 
list. The type nominal says that no ordering is assumed. For another value type, namely 
age-category, an ordering exists and thus the type will get the value ordinal. 

Between the two concepts a relation named residence-application is defined. Each 
instance ("tuple") of the relation denotes a request of a particular applicant (a person or a 
family) for a particular residence. The numbers at the end points of the relation line specify 

• 

• 

• 

• 

-UM 
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residence 

257 

applicant 

registration-number: string 
applicant-type: {starter, 

existing-resident} 
name: string 
street-address: string 
city: string 
birth-date: date 
age: natural 
age-category: age-category-value 
gross-yearly-income: natural 
household-size: natural 
household-type: household-type-value 

number: natural 
category: {starter-residence, 

followup-residence} 
build-type: {house, apartment} 
street-address: string 
city: string 
num-rooms: natural 
rent: number 
min-num-inhabitants: natural 
max-num-inhabitants: natural 
subsidy-type: subsidy-type-value 
surface-in-square-meters: natural 
floor: natural 
lift-available: boolean 

residence 
application 

application-date: string 

Figure 10.6 
Representation of the two central domain concepts in residence assessment: "residence" and "applicant". 

the cardinality of the relation: applicants can apply for at most two residences, and for a 
residence any number of people can apply. 

A relation can freely be used as a complex object type in its own right. This is typically 
the case when the relation has attributes of its own, or if the relation is used as an argu-
ment in another relation. In knowledge modelling this type of "second-order" relation is 
a frequently used modelling tool, because it is a convenient way of handling the complex 
information items that tell us something about other information items (cf. our intuitive 
definition of knowledge as "information about information"). The graphical representation 
stresses the potential use of relations by allowing the relation to be represented in a similar 
way as a concept (see Figure 10.6). 

Housing criteria In addition to the information about residences and applicants, the no-
tion of criterion stands out as an important concept in this domain. Assessment is all about 
criteria. We saw in the domain description in Section 10.2 that for this system we need to 
distinguish four types of criteria: 

1. Has the applicant applied for the right category of residences? 
2. Does the size of the applicant's household fit with the limitations set for the residence? 
3. Does the applicant's income fit with the rent of the residence? 
4. Does the applicant satisfy the other residence-specific constraints (if any)? 

These four criteria can be true or false for a particular case. We represented this by 
defining four subtypes of a concept residence-criterion (see Figure 10.7). The criteria all 
have a attribute truth-value, which can be used to indicate whether a criterion is true or 
false. 
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correct 
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residence-specific 
constraints 

Figure 10.7 
Subtype hierarchy representing the four types of criteria. 

For the moment we limit the domain schema description to the residence, applicant, 
and criteria definitions. In the next activity we add additional domain-knowledge types, in 
particular the rule types which are needed to model the domain knowledge for assessment. 

10.7.5 Specification Activity: Complete Knowledge-Model Specification 

In Chapter 6 we learned that this task is an instance of the task type assessment. Because 
the task templates provided such a good covering of the knowledge components for this 
application (see the activity concerning the choice of a task template), the construction 
process can take the form of the "middle-out" approach described in Chapter 7. We can 
assume that the inferences in Figure 10.5 are at the right level of detail and start modelling 
from there. The full knowledge-model specification in textual format can be found in the 
appendix. 

Task knowledge The task and task-method specifications can almost directly be copied 
from the default method for assessment described in Chapter 6. The main distinction is that 
we decided here to structure the method as a composite task with two subtasks. This is a 
somewhat stylistic decision, and is typical for small variations and adjustments introduced 
by a knowledge engineer for a particular application. The resulting task-decomposition 
diagram is shown in Figure 10.8. The figure shows in a graphical form all tasks plus their 
methods and the inferences they are ultimately linked to. 

The top-level task is named ASSESS-CASE. The task definition in Figure 10.9 de-
scribes the I/O of this task. It is common to give tasks a domain-independent name. How-
ever, in the textual specification we can (optionally) add a domain-specific name (ASSESS-
RESIDENCE-APPLICATION in Figure 10.9). Note that the input and output is also de- 
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task 

task method 

task 

assess case 

assess trough 
abstract & match 

abstract case match case 

match 
method 

Figure 10.8 
Tasks and task methods in the residence-assessment domain. The task methods at the lowest level of decomposi-
tion refer to inferences (the ovals). 

scribed in a domain-independent vocabulary. We use a term such as case-description  instead 
of residence-application.  The task method for the top-level assessment task structures the 
reasoning process into two steps: 

1. Abstracting the case description The decision knowledge in assessment is usually 
phrased in terms of case characteristics that abstract from individual cases and provide 
useful categories of cases that need to be distinguished for assessment purposes. An ex-
ample in the housing domain is the notion of household-type. The concept applicant 
has an attribute household-size. In assessment we abstract all cases into two groups of 
cases: households with one person (single) or with more than one. In this way a rela-
tively large set of cases is transformed into two sets. In this application the abstractions 
are of a simple nature: they concern only the age-category and the household type. 
In general, abstractions are an integral part of many knowledge-intensive applications. 
The power of abstraction seems to be an important element of (human) expertise. It is 
a technique that helps us to cope with the intrinsic complexity of reality. 

2. Matching the (abstracted) case against the decision knowledge Once the case is 
in the right (abstracted) form, we can see how it matches with the assessment criteria. 
The result of this match is a decision. 
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TASK assess - case; 
DOMAIN -NAME: asses - residence -application; 
GOAL: " 

Assess whether an application for a residence by a certain 
applicant satisfies the criteria."; 

ROLES: 
INPUT: 
case-description: Data about the applicant 

and the residence"; 
case-specific-requirements: "Residence-specific criteria"; 

OUTPUT: 
decision: 'eligible or not-eligible for a residence"; 

END TASK assess-case; 

TASK -METHOD assess-through-abstract-and-match; 
REALIZES: 

assess-case; 
DECOMPOSITION: 

TASKS: abstract - case, match -case; 
ROLES: 

INTERMEDIATE: 
abstracted -case: "Original case plus abstractions"; 

CONTROL - STRUCTURE: 
abstract-case(case-description -> abstracted-case); 
match-case(abstracted-case + case-specific-requirements 

-> decision); 
END TASK -METHOD assess-through-abstract-and-match; 

Figure 10.9 
Specification of the top-level task "assess-case." For the housing application we structured the task knowledge 
into one overall task and two subtasks. 

The task control within the ASSESS-CASE task is a simple sequence of the two sub-
tasks. The task method introduces one additional role, namely abstracted-case.  This is an 
example of an intermediate reasoning result, introduced by the decomposition. 

Domain knowledge We can now look at the domain schema provided with the assess-
ment template (see Figure 6.7). We can see the following relationships between this 
schema and the housing domain .  

• A case-datum is in fact an attribute of residence or applicant (cf. Figure 10.6). A 
case as a whole is in fact one instance of the residence-application relation. 

• A norm corresponds in this domain to one of the four criteria shown in Figure 10.7. 
• For the three rule types (i.e., abstraction rules, criteria requirements, and decision 

rules), we discuss in the following paragraphs whether and in which form these ex-
ist in the housing domain 

*ow**sue W PI 
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residence 
abstraction 

has-abstraction residence 
 1+ 

application 
residence 

application 

RULE-TYPE residence-abstraction; 
ANTECEDENT: residence-application; 

CARDINALITY: 1+; 
CONSEQUENT: residence-application; 

CARDINALITY: 1; 
CONNECTION-SYMBOL: 

has-abstraction; 
END RULE-TYPE residence-abstraction; 

Figure 10.10 
The rule type for abstractions. The arrows go from antecedent to consequent. Note that the intended meaning is 
that the antecedent and the consequent consist of expressions about feature values of the concepts indicated (in 
this case "residence application"). 

Abstractions The abstractions that are required for this particular assessment model are 
simple. Basically, we need to abstract the age of applicants into a value indicating one 
of three possible age-category values, and we also need to abstract the number of family 
members into a value for household-type (single or not). Both abstracted values are used 
later on in the evaluation of the norm rent - fit s-i nc ome (see also the rent-income table 
in Section 10.2). 

The abstraction knowledge can be represented using a "rule type" as shown in Fig-
ure 10.10. This rule type is in fact a domain-specific version of the rule type defined in 
Figure 6.7. As explained earlier, rule types are a sort of relation in which the arguments 
are not object instances but expressions about features of an object. An example of an 
abstraction rule (i.e., an instance of the rule type) would look like this: 

residence-application.applicant.household-size > 1 
HAS-ABSTRACTION 

residence-application.applicant.household-type = multiple-persons; 

The antecedent and the consequent are separated through the connection symbol has-
abstraction. The idea is that this connection symbol is chosen in such a way that it pro-
vides a meaningful name for the dependency between the antecedent and the consequent. 
One can see that both antecedent and consequent are expressions about attribute values of 
applicants. This is typical of rules, and distinguishes them from relation instances. Note 
that we define the expressions that can be part of a rule somewhat implicitly. The statement 
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ANTECEDENT: residence-application; 
CARDINALITY: 1+; 

in the abstraction rule type means that the antecedent of a rule instance of this type consists 
of at least one expression (but possibly more) about a feature of residence-application. We 
use the term "feature" to refer to both concept attributes and relations in which the concept 
is involved. For both, the "dot" notation (concept. f eature)  is used. 

For the rule expressions we assume that a standard set of expression operators is avail-
able, depending on the value type of the operand. For example, if the expression concerns 
a numeric attribute, the standard operator set is =,  >, >, <, <. 

Criteria requirements The largest part of the domain knowledge is concerned with log-
ical rules that specify when a certain criterion is true or false. These rules specify the 
requirements that need to be met for a criterion. The rule type residence-requirement 
(see Figure 10.11) defines this requirement knowledge in a schematic way. Again, this rule 
type is a domain-specific version of the rule type defined in Figure 6.7. An instance of this 
type is a rule in which the antecedent consists of expressions about a residence application 
(could concern both the residence and the applicant). The consequent is an expression 
about the truth value of a criterion. 

All cells in the first three columns of the rent-income table (see Table 10.1) correspond 
to an instance of this rule type. For example, the first cell in the first column corresponds 
to: 

residence-application.applicant.household-type = single-person 
residence-application.applicant.age-category = up-to-22 
residence-application.applicant.income < 28000 
residence-application.residence.rent < 545 

INDICATES 
rent-fits-income.truth-value = true; 

Requirements for other criteria can be expressed in similar ways. 

Decision knowledge Finally, we need some domain-knowledge types concerning deci-
sions knowledge. The decision itself can be represented through a concept definition with 
an attribute value indicating whether a certain applicant is eligible for a certain residence. 
In addition, we need a way to express the logical dependency between criteria and the 
decision. In our domain these decision rules are very simple: only if all criteria are true 
for a certain case is the applicant eligible for the residence she applied for. Again, the 
decision rule type can be derived from the rule type that comes with the task template (cf. 
Figure 6.7). 

Domain schema overview Figure 10.11 shows the domain schema for the housing ap- 
plication. The domain schema resembles in many aspects the default assessment domain 
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Figure 10.11 
Domain schema for the housing application. The attributes and subtypes defined in previous figures have been 
left out. 

schema shown in Figure 6.7. The main difference is that here the types have domain-
specific names 

Knowledge bases In knowledge modelling, unlike data modelling, we are usually inter-
ested in the "instances" of some of the object types. This concerns in particular those types 
of which the instances represent the static knowledge used in the reasoning process (cf. the 
"static roles" of inferences). The knowledge bases are the vehicles for writing down such 
knowledge "instances." 

Figure 10.12 shows the specification of the two knowledge bases we identified for this 
domain. For historical reasons these two knowledge bases have been called respectively 
the system-description and the measurement-system: 

1. The knowledge base system-description contains the abstraction knowledge about ap-
plicants. The USES clause at beginning of the knowledge base tells us what kind of 
knowledge instances can be placed in the knowledge base. This definition is always 
of the form DOMAIN-TYPE from SCHEMA-NAME. We have defined only one 
schema, but as we discuss in Chapter 13, there can be a need to define multiple domain 
schemas. 

2. The knowledge base measurement-system can contain instances of two different 
domain-knowledge types: norm requirements and decision rules. 
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KNOWLEDGE-BASE system-description; 
USES: 

applicant-abstraction FROM assessment-schema, 
EXPRESSIONS: 

applicant.household-size = 1 
HAS-ABSTRACTION 

applicant.household-type = single-person; 

applicant.household-size > 1 
HAS-ABSTRACTION 

applicant.household-type = multi-person; 
END KNOWLEDGE-BASE system-description; 

KNOWLEDGE-BASE measurement-system; 
USES: 

residence-requirement FROM assessment-schema, 
residence-decision-rule FROM assessment-schema; 

EXPRESSIONS: 
/* sample requirement for norm "rent fits income" 

applicant.gross-yearly-income >= 70000 AND 
residence.description.rent > 1007 

INDICATES 
rent-fits-income. truth-value = true; 

/* sample decision rule */ 

rent-fits-income.truth-value = false 
IMPLIES 

decision.value = not-eligible; 
END KNOWLEDGE-BASE measurement-system; 

Figure 10.12 
Knowledge bases for the residence-assessment application. The first knowledge base "system-description" con-
tains the abstraction rules. The second knowledge base "measurement-system" contains both the static residence 
requirements, as well as the final decision rules. Only some sample rules are listed. 

The EXPRESSIONS slot of the knowledge base contains knowledge instances. These 
instances should belong to the types listed in the USES slot. In Figure 10.12 only a few 
sample rule instances are listed. During knowledge-model specification we typically do not 
yet try to list all the instances in the knowledge bases, but are satisfied with a few typical 
examples. In the knowledge refinement phase, the knowledge bases can be completed (see 
further). 

Having defined the tasks and their methods, as well as full domain schemas plus partial 
knowledge bases, we can now connect these two by completing the specification of the 
inferences of Figure 10.5. 
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Inference knowledge We identified five inferences that are needed to realize the assess-
ment tasks: 

1. Abstract: This inference is able to take some case data, i.e., data about an applicant 
and a residence, as input and produce a new abstracted case datum as a result. 

2. Specify: This inference generates a list of norms that could be evaluated for a certain 
case. In the housing domain, there are four norms: correct residence category, correct 
household type, rent consistent with income, and (optionally) additional residence-
specific requirements. 

3. Select:  This inference selects one norm from the list. The selection can be done 
randomly, or be based on heuristics like "first the most likely one to fail." 

4. Evaluate: This inference evaluates a particular norm for the case at hand, and returns 
a truth value, indicating whether the norm holds for this case. An example output of 
this inference would be that for a particular case the norm rent - fits - income is true. 

5. Match: The match inference takes as input all results of norms evaluation, and suc-
ceeds if a decision can be reached. In the housing domain, the decision not -eligible 
can be reached as soon as one of the four norms turns out to be false. The decision el-
igible can only be reached after all norms have been evaluated and are true. 

The inferences provide the link between the tasks and their methods on the one hand 
and the domain schema on the other hand. The main distinction with a task is that an 
inference does not have a "method" associated with it. The inference is assumed to be 
completely specified through its input, output, and static knowledge (the dynamic and 
static role definitions). No internal control is specified for the inference. 

For each role used in the inference, a mapping is defined from the role to the domain 
objects that can play this role. In this way the functional names (the roles) provide an 
indirect link between the "functions" themselves (tasks and inferences) and the "data" (the 
domain schema). 

Figure 10.13 shows the textual specification of two of the inferences, namely abstract 
and evaluate. In Figure 10.14 the corresponding knowledge roles are specified. The textual 
specification of knowledge roles is richer than the graphical representation in an inference 
structure. The main additional piece of information concerns the domain-mapping for each 
knowledge role. 

Take, for example, the specification of abstract. In this inference three knowledge 
roles are used. The knowledge-role specifications show the domain mappings of infer-
ence roles to domain-knowledge constructs. The input role case-description is mapped 
onto the domain-knowledge relation residence-application. This means that all objects of 
residence-application can play the role of case description. Remember that residence-
application is in fact a relation between an applicant and a residence. One can see a 
residence-application object as a conglomerate of attribute values about a certain resi-
dence and a certain applicant. This is indeed precisely what constitutes a case description in 
this domain The static role abstraction-knowledge is mapped onto the domain-knowledge 
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INFERENCE abstract; 
ROLES: 

INPUT: 
case-description; 

OUTPUT: 
abstracted-case; 

STATIC: 
abstraction-knowledge; 

SPECIFICATION: " 
Input is a set of case data. Output is the same set of 
data extended with an abstracted feature that can be 
derived from the data using the corpus of abstraction 
knowledge."; 

END INFERENCE abstract; 

INFERENCE evaluate; 
ROLES: 

INPUT: 
norm, 
abstracted-case, 
case-specific-requirements; 

OUTPUT: 
norm-value; 

STATIC: 
requirements; 

SPECIFICATION: " 
Establish the truth value of the input norm for the given 
case description. The underlying domain knowledge consists 
of the requirements in the knowledge base and of additional 
case-specific requirements (which are part of the task 
input)."; 

END INFERENCE evaluate; 

Figure 10.13 
Textual specification of two of the inferences. 

type residence-abstraction. For static roles, it is common to indicate also the knowledge 
base in which the knowledge is stored, in this case the knowledge base measurement-
system. 

The second inference evaluate is defined in a similar manner. Note the use of SET-
OF to indicate that the role consists of a set of domain objects. The use of SET-OF is 
not necessary for static roles, where by default we assume that it concerns a set. Note-
worthy is also that the roles norm  and norm-value  both map onto the same domain type 
residence-criterion. The difference between the two roles is that the value for the truth-
value attribute is filled in, but this difference is something that we cannot express in our 
notation. However, the difference in meaning should be clear intuitively. 

,„ . 
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KNOWLEDGE -ROLE case-description; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence -application; 
END KNOWLEDGE-ROLE case-description; 

KNOWLEDGE-ROLE case-specific-requirements; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

SET-OF residence-requirement; 
END KNOWLEDGE-ROLE case-specific-requirements; 

KNOWLEDGE-ROLE abstracted-case; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-application; 
END KNOWLEDGE-ROLE abstracted-case; 

KNOWLEDGE-ROLE norm; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-criterion; 
END KNOWLEDGE-ROLE norm; 

KNOWLEDGE-ROLE norm-value; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-criterion; 
END KNOWLEDGE-ROLE norm-value; 

KNOWLEDGE-ROLE abstraction-knowledge; 
TYPE: STATIC; 
DOMAIN-MAPPING: 

residence-abstraction FROM system-description; 
END KNOWLEDGE -ROLE abstraction -knowledge; 

KNOWLEDGE-ROLE requirements; 
TYPE: STATIC; 
DOMAIN-MAPPING: 

residence-requirement FROM measurement-system; 
END KNOWLEDGE-ROLE requirements; 

Figure 10.14 
Textual specification of knowledge roles used in the "abstract" and "evaluate" inferences. 



268 Chapter 10 

assessment finished/ 
report decision 

 

(-- application 
assessment 

data needed/ask 

  

application received/ 

    

  

V 

 

order assessment 

   

 

(waiting for 
case data 

data received / reply 

     

Figure 10.15 
State diagram representing the communication plan for the assessment task. 

10.7.6 Refinement Activity: Fill Knowledge Bases 

Filling the knowledge bases for the housing case was not difficult. All information about 
abstractions, requirements and decision rules was included in the bi-weekly. A full listing 
of the domain knowledge for the knowledge bases can be found in the appendix. These 
rules will typically need regular updating. For example, the rent-income table is likely to 
be changed every year or so. 

10.7.7 Refinement Activity: Validate Knowledge Model 

In the housing case study, knowledge-model validation was done by building a prototype 
system containing only the reasoning stuff. This prototype is shown as an example imple-
mentation in Chapter 12 (see the system traces in Figures 12.5-12.8). Based on the traces 
provided by such a running system one can detect faults, inconsistencies, and further im-
provements. In this activity the scenarios drawn up earlier are useful as sample material 
for the prototype. 

10.8 Communication Model 

The communication model for this application is rather simple. The overall communica-
tion plan can be described in a single diagram. Figure 10.15 shows the main states and 
transitions involved in this task. 

Once a new application is received, a transaction ORDER APPLICATION ASSESS-
MENT becomes active. This brings the system in the "assessing" state. For carrying out an 
assessment, the system will need information about the applicant and the residence she is 
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Communication Model Transaction Description Worksheet CM-1 
TRANSACTION ORDER APPLICATION ASSESSMENT 
INFORMATION OBJECT A residence application 
AGENTS INVOLVED Data entry + knowledge system (+ assigner) 
COMMUNICATION PLAN See Figure 10.15. The transaction can become active as soon as a new 

application arrives. 
CONSTRAINTS In the prototyping phase, the system will interact with the assigner, a 

human agent. In the future, the system will be part of a fully automated 
system and interact with the data entry system. 

INFORMATION 
EXCHANGE 
SPECIFICATION 

This transaction is of the order type. No detailed information exchange 
specification is required. 

Table 10.11 
Worksheet CM-1: Transaction "order application assessment" details. 

Communication Model Transaction Description Worksheet CM-1 
TRANSACTION OBTAIN APPLICATION DATA 
INFORMATION OBJECT Attribute-value pairs of an applicant and residence, e.g., age of a certain 

applicant 
AGENTS INVOLVED Database + knowledge system 
COMMUNICATION PLAN See the transitions connected to the "waiting-for-data" state in 

Figure 10.15. 
CONSTRAINTS Ensure correct mapping of the data request onto the data format required by 

the database. 
INFORMATION 
EXCHANGE 
SPECIFICATION 

This transaction is of the ask-reply type. 

Table 10.12 
Worksheet CM-1: Transaction "obtain application data" details. 

applying for. This gives rise to a second transaction which consists of a ask/reply pattern: a 
request for data is sent to the database, and the system goes into a "waiting for data" state. 
When the case data are received, the system returns to the "assessing" state. When assess-
ment has finished the system makes a transition to its final state. During this transition the 
transaction "report decision" is carried out. This transaction ensures that, for example, a 
valid application is inserted into the database used by the priority calculator. 

Thus, the figure contains three transactions: 

1. Order application assessment 
2. Obtain application data 
3. Report decision 

These transactions can be described in more detail with the help of worksheet CM-1. Ta-
ble 10.11 and Table 10.12 show the worksheets for the first two transactions. 
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In this chapter we have seen how a simple knowledge-intensive application can be 
analyzed and modelled using the CommonKADS modelling framework. One important 
point to note is that the knowledge model for assessment described in this chapter was not 
developed from scratch, but is in fact a small variation on an existing model that we were 
able to reuse. 
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Designing Knowledge Systems 

Key points of this chapter: 

• In design we construct a specification of a software system based on the 
requirements provided by the knowledge model and the communication 
model. 

• The preferred design approach is structure-preserving design, meaning that 
the information contained in the analysis models is maintained during sys-
tem design. 

• Applying this principle delivers a reference architecture for CommonKADS 
systems. This architecture is a powerful support mechanism in the design 
of CommonKADS-based systems. 

• The design process can be split into four steps, each of which is recorded in 
a separate worksheet. 

11.1 Introduction 

In this chapter we look at the problem of turning requirements specified in the analysis 
models into a software system. The major input for the design process in CommonKADS 
is the knowledge model, which can be viewed as a specification of the problem-solving 
requirements. Other inputs are the external interaction requirements (defined in the com-
munication model), and also a set of "nonfunctional" requirements (defined in the organi-
zation, task, and agent models) typically related to budget, software. and hardware con-
straints. Based on these requirements, the CommonKADS design model describes the 
structure of the software system that needs to be constructed in terms of the subsystems, 
software modules, computational mechanisms, and representational constructs required to 
implement the knowledge and communication models. 
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Figure 11.1 
The design model, contrary to the other five CommonKADS models, is part of the software world. 

In system design, a radically different viewpoint and vocabulary are used when com-
pared to the other models. System design is concerned with software and its internal or-
ganization. It is as if we turn our head from the application domain, and start looking at 
the other side: the resulting system. The other models, in particular the knowledge and 
communication models, can be seen as setting the requirements for this design process. 
This change of viewpoint is shown somewhat intuitively in Figure 11.1. 

Design of knowledge-intensive systems is essentially not much different from the de-
sign of any complex information system. We assume that you have background knowledge 
of design methods in general software engineering. A good overview of the software de-
sign process can be found in the textbook by Sommerville (1995). Here, we mainly focus 
on design issues that are specific to knowledge-intensive systems. 
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Central to the design process is the software architecture. A software architecture 
describes the structure of the software in terms of subsystems and modules, as well as the 
control regimen(s) through which these subsystems interact. In this chapter we present 
a reference architecture that can be used for CommonKADS-based knowledge-intensive 
systems. A reference architecture is a skeletal form of an architecture that can be instanti-
ated for a class of systems. A reference architecture predefines a number of architectural 
design decisions. A reference architecture is a powerful way of supporting the design pro-
cess. The CommonKADS reference architecture makes use of an important modern design 
principle, namely the principle of structure-preserving design. This principle dictates that 
both the content and the structure of the information contained in the analysis models 
(in particular the knowledge model and the communication model) are preserved during 
design. As we shall see, this principle facilitates transparency and maintainability of the 
design, and therefore ensures a high design quality. 

Similar to earlier chapters, we document the design model through a number of work-
sheets that act as a checklist for the design decisions that need to be taken. This chapter 
starts off with a more detailed discussion about the principle of structure-preserving design, 
because it is considered central to design in CommonKADS. We then give an overview of 
the design process in the form of four typical design steps that one needs to take. Sub-
sequently, these four steps are described in greater detail. Each step has an associated 
worksheet. We finally look at two special cases of design, namely design of prototypes 
and design of distributed systems. 

11.2 Structure-Preserving Design 

11.2.1 Design Quality 

As a general rule, realizing a system will be simple and transparent if the gap between 
application and architecture specification is small, meaning that the knowledge and com-
munication constructs map easily onto computational primitives in the architecture. For 
example, although it is in principle possible to map the knowledge model onto a first-
generation rule-based architecture, such a design would result in loss of the distinctions 
between the various types of knowledge. All knowledge types would be mapped onto the 
flat rule base. This approach reduces maintainability and reusability. 

In principle, the designer is free to make any set of design decisions that result in meet-
ing the requirements formulated during analysis. However, from a methodological view-
point a structure-preserving design should be strongly favored. By "structure-preserving" 
we mean that the information content and structure present in the analysis models is pre-
served in the final artifact. For example, it should be possible to retrieve from the final 
system both the domain-knowledge structures specified during analysis as well as their 
relations to knowledge roles. In other words, design should be a process of adding imple-
mentation detail to the analysis models. 
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Thus, the basic principle behind this approach is that distinctions made in the analysis 
models are maintained in the design and the implemented artifact, while design decisions 
that add information to the knowledge and communication models are explicitly docu-
mented. Design decisions specify computational aspects that are left open during analysis, 
such as representational formats, computational methods used to compute inferences, dy-
namic data storage, and the communication media. The advantage of a structure-preserving 
design is that the knowledge and communication models act as a high-level documenta-
tion of the implementation and thus provide pointers to elements of the code that must be 
changed if the model specifications change. 

Preservation of information is the key notion. Structure-preserving design ensures that 
the design process meets quality criteria. These quality criteria are: 

• Reusability of code Structure-preserving design prepares the route for reusability of 
code fragments of a knowledge system, because the purpose and role of code frag-
ments are made explicit. Reusable code fragments can be of various types and grain 
size, ranging from implementations of inferences to implementations of an aggrega-
tion of inferences plus control knowledge. The layered structure of CommonKADS 
knowledge models facilitates this type of reusability. 

• Maintainability and adaptability  The preservation of the structure of the analysis 
model makes it possible to trace an omission or inconsistency in the implemented ar-
tifact back to a particular part of the model. This considerably simplifies maintenance 
of the final system. It also facilitates future functionality extensions. Experience with 
systems designed in a structure-preserving fashion indicates that they are indeed much 
easier to maintain than conventional systems. 

• Explanation The need to explain the rationale behind the reasoning process is a typi-
cal feature of knowledge-intensive systems. A structure-preserving approach facilitates 
the development of explanation facilities that explain the reasoning process in the vo-
cabulary of the knowledge model. For example, for some piece of domain knowledge 
it should be possible to ask: 

— in which elementary problem-solving steps it is used and which role it plays; 
— when and why it is used to solve a particular problem. 

As the knowledge model is phrased in a vocabulary understandable to a human ob-
server, a structure-preserving design can provide the building blocks for "sensible" 
explanations. 

• Knowledge-elicitation support Given a structure-preserving design, the knowledge-
model description can fulfill the role of semantic information about pieces of code of 
the artifact. This additional information can be used to support knowledge elicitation, 
debugging and refinement in various ways. Some examples: 

— One can construct editors for entering domain knowledge directly into the system 
which interact with the user in the vocabulary of the model. 

1 r 
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— One can build debugging and refinement tools which spot errors and/or gaps in par-
ticular parts of a knowledge base by examining its intended usage during problem-
solving. 

— It is possible to focus the use of machine-learning techniques to generate a partic-
ular type of knowledge, e.g., abstraction and specification knowledge. 

Structure-preserving design is currently also being advocated in software engineering 
in general, especially in the area of object-oriented modelling and design. The motivation 
there follows a similar rationale, with an emphasis on reusability and maintenance. 

11.2.2 Overview of the Design Process 

A typical design process starts with a specification of the software architecture. Once the 
general structure of the software is defined though the architecture, a detailed architecture 
specification can be made. This serves as the basis for the actual application. In addition, 
design decisions need to be taken with respect to the hardware and software platforms 
designated for implementation. As these latter decisions might influence the rest of the 
design process, these decisions should be taken early on in the design process. 

This leads to a design process consisting of four steps: 

Step 1: Design the system architecture  In the first step we specify the general archi-
tecture of the system. Typically, this step is largely predefined by the reference architec-
ture provided by CommonKADS (see the next section), and can therefore be carried out 
quickly. 
Step 2: Identify the target implementation platform  In this step we choose the hard-
ware and software that should be used for system implementation. This choice is made 
early on in the design process, because choices in this area can seriously affect the design 
decisions in steps 3 and 4. Often, the choice is largely or completely predefined by the 
customer, so there is in reality not much to choose from. 
Step 3: Specify the architectural components  In this step the subsystems identified in 
the architecture are designed in detail. Their interfaces are specified and detailed design 
choices with respect to representation and control are made. CommonKADS provides a 
checklist for the design decisions that need to be made here. 
Step 4: Specify the application within the architecture  In the final step we take the 
ingredients from the analysis models (e.g., tasks, inferences, knowledge bases, transac-
tions) and map those onto the architecture. As we will see, the strength of the Com
monKADS reference architecture is that it already predefines to a large extent how this 
mapping should be performed. 

The design process is graphically summarized in Figure 11.2. The next four sections 
describe the four steps in more detail. Each section defines a worksheet that acts as a 
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Figure 11.2 
The four steps in system design. The lower part of the figure shows the support knowledge provided by Com-
monKADS to help in constructing the design model. 

documentation of the design step. Together, the filled-in worksheets constitute the design 
model of an application. 

At this point it might be useful to make a note about the ordering of steps in the design 
process. As we all know, design is a creative process. When humans perform a design 
activity, they hardly ever do this in a purely rational top-down fashion. Designers design 
in an ad hoc fashion, mixing bottom-up with top-down design at will. This is all normal 
and should not be regarded as "bad." However, in documenting the design it is wise to 
write it down as if the design had been done in a rational way. This makes the design much 
more understandable to outsiders. The reader is referred to the paper entitled "A Rational 
Design Process: How and Why to Fake It" by Parnas and Clements (1986) for a convincing 
argument in favor of this approach. 

11.3 Step 1: Design System Architecture 

The system architecture defines the general structure of the software you are construct-
ing. An architecture description typically consists of three elements (Sommerville 1995, 
chapter 13): 
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1. a decomposition of the system into subsystems: 
2. the overall control regimen; 
3. the decomposition of subsystems into software modules. 

For CommonKADS we have defined a reference architecture that can be used in most 
applications. This architecture is described at two levels of granularity. 

11.3.1 Global System Architecture 

We first describe the architecture of the system as a whole. The architecture is based on 
the Model-View-Controller (MVC) metaphor (Goldberg 1990). The MVC architecture 
was developed as a paradigm for designing programs in the object-oriented programming 
language SmallTalk-80. In this architecture three major subsystems are distinguished: 

• Application model This subsystem specifies the functions and data that together de-
liver the functionality of the application. In the case of a CommonKADS-based system, 
the application model contains the reasoning functions. The "data" in the application 
model are the respective knowledge bases and the dynamic data manipulated during 
the reasoning process. 

• Views The "views" subsystem specifies external views on the application functions 
and data Typically, these views are visualizations of application objects on a user-
interface screen, but it could also be a view of a data request in terms of a SQL query. 
Views make static and dynamic information of the application available to external 
agents, such as users and other software systems. The separation of application objects 
from their visualizations is one of the important strengths of an MVC-type architec-
ture. Application objects are decoupled from their visualizations, and built-in update 
mechanisms are used to ensure the integrity of the visualizations. Typically, there can 
be multiple visualizations of the same object. The original MVC architecture focused 
mainly on views as user-interface objects, but they can equally well be used to interface 
with other software systems. 

• Controller The controller subsystem is the central "command & control" unit. Typ-
ically, it implements an event-driven control regimen. The controller contains handles 
for both external and internal events, and may also have a clock and start a system 
process in a demon-like fashion. The controller activates application functions, and 
decides what to do when the results come back. The controller defines its own view 
objects to provide information (e.g., on a user interface) about the system-control pro-
cess. The controller implements the communication model, in particular the control 
information specified in the communication plan and within the transactions. 

Although this architecture was originally developed in an object-oriented environment, 
there is nothing "inherently" object-oriented about it. In fact, one can see it as a functional 
decomposition of groups of objects. However, realizing this architecture might indeed be 
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Figure 11.3 
Reference architecture for a CommonKADS system. The architecture is essentially an instantiation of the MVC 
(Model-View-Controller) architecture. 

easier in an 0-0 programming language, because the control regimen lends itself well to a 
message-passing approach. The message-passing control paradigm also fits well with the 
way communication is modelled in CommonKADS (see Chapter 9). 

This global system architecture is depicted graphically in Figure 11.3. System inputs 
are handled by the controller. The controller can send activation messages to one or more 
application functions, which in the CommonKADS case are typically reasoning functions 
(i.e., the activation of a task). 

The "application model" subsystem has itself a more fine-grained architectural de-
scription, as we will see in the next section. Further on in this chapter, we discuss in more 
detail the detailed specification of this architecture (step 3) and how one can design the 
application within it (step 4). 

11.3.2 Architecture of the "Application-Model" Subsystem 

The application model contains the software components that should realize the functions 
and data specified during analysis. In CommonKADS terms, the application model con- 
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tains the reasoning functions (the tasks and inferences) and the information and knowledge 
structures (the domain knowledge). The reference architecture of this subsystem is shown 
in Figure 11.4. The architecture is based on the following principles: 

1. The architecture should follow the principle of "structure-preserving design," and thus 
supports an easy mapping of analysis material onto design, and also provides hooks for 
the necessary design-specific refinements. 

2. For several reasons we have opted for an object-oriented decomposition of the archi-
tectural components of this subsystem: 

a. Although some of the analysis components have a functional character (e.g., task, 
inference), their description during analysis is that of an information object. Tasks 
and inferences are described in a declarative way, which easily maps onto an object 
specification. 

b. Integration and/or coordination with other systems becomes more important in the 
design stage. As 0-0 is the prevailing paradigm in contemporary software engi-
neering, an 0-0-based design of a knowledge-intensive system will make an inte-
gration easier. 

c. Also, because many implementation environments use an object-oriented approach, 
the mapping onto such an environment will be easier. 

The basic idea behind the objects in Figure 11.4 is that we incorporate the structure 
of the knowledge model into the design and add implementation-specific details. For ex-
ample, we see in Figure 11.4 that the object "inference method" is introduced. This object 
does not occur during analysis, because inferences are specified as a black box. However, 
during design we have to specify a method (algorithm) for implementing the inference, 
using the roles specified for this inference. Other objects in the architecture come directly 
from analysis, but contain additional design-specific details. For example, the dynamic 
roles have an associated datatype as well as a number of access/modify operations, which 
enable the use of the dynamic roles as the "working memory" of the reasoning system. In 
the section on step 3 of the design process, we go through the full list of design-specific 
extensions, and outline the options from which the designer has to choose. 

Worksheet DM-1 (see Table 11.1) summarizes the outcome of this first step in the de-
sign process. In Table 11.2 one can find an instantiated version of this worksheet based on 
the decisions taken for the reference CommonKADS architecture described in this section. 
This sample sheet can be used as the point of departure for system design. Deviations from 
the reference architecture should be clearly reported in this worksheet. 

11.4 Step 2: Identify Target Implementation Platform 

Theoretically, one can carry out a design completely independent of the implementation 
platform that will be used. We can make a complete object-oriented design and implement 



task method 

intermediate roles 
control specification 

execute 

280 Chapter 11 

task 

I/O roles 
method 

execute 

V 
inference 

I/O roles 
static roles 
method Inference method 

execute 
has-solution? 

► algorithm spec 
local vars 

new-solution? 

execute transfer 
function 

I/O roles 

V 

V  
dynamic role 

datatype 
domain mapping 
current binding 

access/update 
functions 

static role 

domain mapping 

access functions 

• 
domain construct  

V  
knowledge base 

knowledge-base name 
uses 

access functions 
inferencing functions 

Figure 11.4 
Architecture of the "application-model" subsystem. The subsystem is decomposed in an object-oriented way and 
follows the structure-preserving design principle. The dotted lines indicate method-invocation paths; the solid 
lines are information-access paths. 

it in COBOL. It will usually take more time than if we had chosen an object-oriented imple-
mentation language, but in principle there is no inherent limitation. In practice, however, 
it matters. 

For this reason it is usually a good idea to identify early on in the project what the 
constraints are with respect to the implementation platform. In particular, if the platform 
is fixed in advance by the customer, you have to be careful. 
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Design Model Worksheet DM-1: System Architecture 
Architecture decision Format 
SUBSYSTEM STRUCTURE Refer to diagram with subsystems. 

One can also refer here to standard subsystem structures such as a 
repository model, a client-server model, MVC model, abstract machine 
model, . . . 

CONTROL MODEL Characterization of the overall system control regimen. 
E.g., event-driven, centralized control, call-return model, ... 

SUB-SYSTEM 
DECOMPOSITION 

Refer to diagrams in which subsystems are being decomposed. 
Indicate for each decomposition the paradigm underlying the 
decomposition, e.g., object-oriented or function-oriented. 

Table 11.1 
Worksheet DM-1: System architecture description. The structure of this worksheet is based on the description of 
a system architecture given by Sommerville (1995, Chapter 13). 

Design Model Worksheet DM-1: System Architecture 
Architecture decision Format 
SUBSYSTEM STRUCTURE See Figure 11.3. The architecture is a variation of the MVC model. 
CONTROL MODEL Centralized control with a "manager" that handles incoming events and 

that may have its own internal clock and agenda. 
SUBSYSTEM 
DECOMPOSITION 

The subsystem "application model" is decomposed into modules in 
Figure 11.4. This decomposition follows object-oriented principles. 

Table 11.2 
Worksheet DM-1: Instantiation for the reference CommonKADS architecture. This sheet can be used as a tem-
plate in which deviations from the reference architecture should be clearly reported. 

Guideline 11-1:  IF THERE ARE NO EXTERNAL CONSTRAINTS FOR THIS STEP, DEFER 
IT TO AFTER STEP 3 
Rationale: Steps 2 and 3 influence each other. If you are free in selecting a platform, you 
can select the one that suits best your architectural decisions. 

Nowadays, the choice of an implementation platform is mainly a software choice. The 
number of widely used hardware platforms has decreased considerably, and most popular 
software is available on different platforms. Therefore, we concentrate here on the software 
choice. 

The following characteristics are relevant to the software choice: 

• Availability of a library of "view" objects Absence of such a facility will undoubt-
edly imply much extra implementation work. A pure offline batch-processing system 
could be an exception. 

• Declarative knowledge representation The knowledge in the system (often in the 
form of "rules") needs to be available in a form in which it can be easily managed, 
updated, and refined. Therefore, a declarative representation of knowledge is best. 
This is sometimes a problem in 0-0 environments. 
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• Standard interfaces to other software Often, access to databases is needed. You 
then need to use a protocol for interacting with the database, e.g., ODBC. For a dis-
tributed system, a standard CORBA-type interface is desirable. 

• Language typing Given the 0-0 nature of the architecture design, an object-oriented 
typing of software objects simplifies the mapping of analysis and design onto code. In 
a language like Prolog with hardly any typing, the designer has to build her own type 
representation. 

• Control flow Does the environment support a message-passing approach? It is pos-
sible to have multiple threads of control? 

• CommonKADS support  Does the software provide an implemented Com
monKADS architecture, e.g., through a library package? Does it support a link 
with a CASE tool for CommonKADS analysis, e.g., reading in knowledge-model and 
communication-model descriptions? Both facilities can speed up the implementation 
considerably and are particularly useful if prototyping is required. 

Worksheet DM-2 (see Table 11.3) provides a checklist for the selection of a software 
environment. In the next chapter we look at two sample software environments each of 
which could be a reasonable choice. It is not meant as a limitative list, but more as typical 
examples of a class of software environments. The two environments are: 

1. A Prolog environment is described as an example of the class of traditional knowledge-
system programming languages. We have chosen a Prolog with an add-on 0-0 package 
of predefined view objects. Its main disadvantage is the weak language typing. 

2. The Aion-8 system is a dedicated object-oriented environment for knowledge-intensive 
systems. It is a richer environment than Prolog, but also less flexible. 

11.5 Step 3: Specify Architectural Components 

In step 3 of the design process we define the architecture components in more detail. In 
particular we define the interfaces between the subsystems and/or system modules. In 
this section we describe for each component which generic architectural facilities can be 
provided, and what kind of options the designer has in making these design decisions. For 
the components involved we refer back to Figures 11.3 and 11.4. 

Some platforms may actually provide you with a CommonKADS architecture in which 
the decisions have been predefined. That has advantages (step 3 hardly takes any time), but 
destroys your potential for creativity (if there was a need for that anyway). 

11.5.1 Controller 

The controller realizes an event-driven control approach with one central control com- 
ponent. It can be viewed as the implementation of the communication model. The fol- 
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Design Model Worksheet DM-2: Target Implementation Platform 
SOFTWARE PACKAGE Name of the software package 
POTENTIAL HARDWARE Hardware platforms the package runs on 
TARGET HARDWARE Platform the software will actually run on 
VISUALIZATION 

LIBRARY 

Library available? Facilities for views: automatic updates, etc. 

LANGUAGE TYPING Strong vs. weak typing. Full 0-0 typing? Including multiple 
inheritance? 

KNOWLEDGE 
REPRESENTATION 

Declarative or procedural? Possibility to define rule sets? 

INTERACTION 

PROTOCOLS 
Protocols supported for interacting with the outside world: ODBC, 
CORBA, ... 

CONTROL FLOW Message-passing protocol? Multiple threads of control? 
CommoNKADS 
SUPPORT 

Does the software provide an implemented CommonKADS 
architecture, e.g., through a library package? Does it support a link 
with a CASE tool for CommonKADS analysis, e.g , reading in 
knowledge-model and communication-model descriptions? 

Table 11.3 
Worksheet DM-2: Specification of the facilities offered by a software environment in which the target system 
will be implemented. 

lowing is a list of typical design decisions that need to be taken in connection with the 
controller: 

• Decide on an interface of an event handler, both for external events (incoming data or 
requests) and internal events (return values of application-model functions). 

• Decide whether the controller should be able to perform demon-like control, in which 
case an internal clock and an agenda mechanism need to be designed for the controller. 

• Should interrupts be possible, e.g., of the execution of tasks? 
• Is there a need for concurrent processing? 

Guideline 11-2:  BE CAREFUL WITH ALLOWING INTERRUPTS AND/OR CONCUR-
RENCY 
Rationale: Specification of control in either case is both difficult and error-prone. Make 
yourself familiar with the specialized literature on this subject. 

The need for complex architectural facilities for the controller depends heavily on the 
complexity of the communication model. A system with a highly interactive style such as 
the Homebots system used as an example in Chapter 9 will require elaborate facilities. On 
the other hand, a system performing the assessment of residence applications discussed in 
Chapter 10 (which is mainly a batch-processing system) have only very few demands. The 
following facilities are typically needed: 

• Event handlers for activating application-model functions asked for by an external 
agent (an external event). 
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• Event handlers for receive transfer functions in the application model. 
• Event handlers for internal events, in particular events generated by transfer functions 

of the type obtain. This may also require suspend and resume operations on application-
model functions. 

• Event handlers for providing information about the reasoning process: tracing infor-
mation, what-if scenarios, printing reports, and so on. 

• Event handlers for aborting execution of a function. 

Typically, each transaction will be implemented as an event handler or as a combi-
nation of event handlers. The controller defines its own view objects to represent "meta" 
information about the system-control process. 

11.5.2 Application Model: Task 

For the task object we need to define two operations: (1) an initialize operation that can 
be used to set values for the input values of the task, and (2) an execute operation, which 
should invoke the corresponding task method. For the latter operation one has to decide 
whether it has a boolean return value, indicating success or failure of the task method. 
This decision depends on the type of control used in the operationalization of the control 
structure (see below). 

11.5.3 Application Model: Task Method 

The two main decisions for the design of a task method are concerned with the oper-
ationalization of the control structure. The first decision concerns the control language 
used. Control in knowledge models is usually specified in an imperative form, but is still 
defined in informal pseudocode. The designer has to decide on a set of control constructs 
for implementing the control structures. You need at least sequencing, selection (if ... then 
... else) and iteration (repeat ... until, while ... do, for ... do). You may also want to con-
sider control constructs for concurrent processing and synchronization. Part of the control 
language is provided by invocation of operations on other architecture objects, such as 
dynamic roles (working memory operations), tasks, inferences, and transfer functions (all 
subfunction calls). 

The second decision is concerned with the place where the control structure is defined. 
In an 0-0 approach it seems natural to view this as the implementation of an execute 
operation, but this destroys the declarative nature. For example, it would then not be easy 
to define a view that shows the flow of control. The alternative is to "objectify" the whole 
control structure, which implies a significant amount of work. This decision is typically 
strongly influenced by the target implementation platform. We will see example solutions 
in Chapter 12. 
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11.5.4 Application Model: Inference 

Like a task, the design of the inference object is largely based on the information contained 
in the knowledge model. In design we usually assume that an inference has an "internal 
memory" for the solutions found. This memory is "reset" each time a task in which the 
inference is involved terminates. An inference execution fails if no new solution is found. 
The design decisions with respect to inferences are related to the definition of operations 
that enable inference execution. We usually need three operations, namely: 

• The execute operation retrieves the static and dynamic inference inputs and invokes the 
inference method. If a new solution is found, it should be stored in some internal state 
variable. 

• The has-solution? and new-solution? operations are tests that can be used in the task-
method control language and "try" an inference method without actually changing the 
state of working memory. Implementation of these operations might actually benefit 
from a truth-maintenance mechanism for the operations on dynamic roles (see below). 

In the implementation there is ample room for efficiency improvement, in particular 
by storing intermediate results of inference-method invocations. The design of inferences 
is usually easy within a logic-programming environment (e.g., Prolog), because inference 
execution behaves very much like backtracking in this type of language. 

11.5.5 Application Model: Inference Method 

Inferences do not specify how the inference will be achieved. This how description is 
typically something that has to be added during design. During analysis, the knowledge 
engineer often takes what one could call an automated-deduction view of a particular in-
ference: the knowledge engineer specifies an inference in such a way that she knows that it 
is possible to derive a conclusion, given the available knowledge, no matter how complex 
such a derivation might be in practice. In analysis, the emphasis lies on a competence-
oriented description: can I make this inference in principle, and what is the information I 
need for making it happen? An inference method specifies a computational technique that 
actually does the job. Some example inference methods are constraint satisfaction, forward 
and backward chaining, matching algorithms, and generalization. 

One can take the view that inference methods are part of inferences (i.e., included in 
the implementation of the execute operation) and thus should not have the status of separate 
architectural components. However, the relation between inferences and inference methods 
is typically not one-to-one. Several inferences may apply the same inference method, but 
for different purposes. The reverse can also be true, namely that one inference is realized 
through multiple methods. Thus, incorporating inference methods into inference prevents 
making full use of reusability. To enable reuse, inference methods should not have direct 
access to the dynamic and static roles, but rather receive these as input arguments when the 
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method is invoked by an inference. This makes it possible for designers to keep a catalog 
of inference methods available that can be used for many tasks. In practice it turns out that 
many applications just require some simple rule-chaining methods plus some set-selection 
methods. 

11.5.6 Application Model: Dynamic Role 

For dynamic roles two architectural design decisions need to be taken: 

1. Which datatypes do you support for dynamic roles? Example datatypes are element 
(single role filler), set (unordered, no duplicates), bag (unordered, duplicates allowed), 
and list (ordered, duplicates allowed). 

2. What access and modification operations do you support for each datatype? For exam-
ple, for sets you can think of select (retrieve a random member from the set), add (add 
elements to a set), subtract (delete elements from a set), and empty? (a test to see 
whether the set has any members). 

In addition, you might want to provide some mechanisms for truth maintenance, which 
would support "what-if" questions and the test operations on inferences (has-solution? and 
new-solution?). The need for truth maintenance might be a factor influencing the choice 
of a target implementation platform. 

11.5.7 Application Model: Static Role 

For the static role object, the architecture needs to provide access functions. They can 
typically be of three kinds: 

1. Give all instances of a knowledge role. 
2. Give a single knowledge instance of the role. 
3. Does a certain knowledge instance exist? 

The first request is by far the most common access function and is for most applica-
tions sufficient. The access functions typically delegate the request to the access functions 
defined for the corresponding knowledge base. 

11.5.8 Application Model: Knowledge Base 

For the knowledge bases three decisions have to be taken: 

1. We have to decide on the representational format for the instances of rule types. Note 
that this need not necessarily be a production rule formalism. Sometimes, a relational 
table-like formalism can suffice. Dedicated environments such as AionDS provide 
a rule formalism together with some associated inference methods. In programming 
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languages such as Prolog and Java, this will have to be constructed by the designer 
and, subsequently, the implementer. 

2. We have to define some access and modify functions. These access functions typically 
match the needs of the access functions of the static role object (see above). 

3. We are likely to need knowledge-base modification and/or analyze functions. These 
functions are related to the editor functions that allow a knowledge maintainer to up-
date, debug, and/or refine the system knowledge bases. 

11.5.9 Application Model: Domain Constructs 

The domain constructs such as concepts, relations, and rule types are usually only included 
for documentation purposes, and do not require any additional architectural facilities. 

11.5.10 Views 

Views realize the presentation of the system to external agents. In the architecture we have 
to provide two types of facilities for realizing views: 

1. a number of view types, such as windows, menu types, browsers, figures, and so on; 
2. architectural facilities for linking an application-model object to one or more views, 

and ensuring integrity of the views by sending update messages to the relevant views 
at the moment an application-model object changes. 

With respect to view types for user interfaces, the current state of the art is to use 
a number of predefined graphical user-interface methods. Most implementation environ-
ments provide a standard set of those facilities. Also, views to present information to other 
software systems have been standardized. For example, most implementation environ-
ments can handle SQL output to other systems. 

Two types of user interfaces are typically required for knowledge-intensive systems, 
namely (1) the interface with the end user(s), and (2) the interface with the expert(s). We 
briefly discuss the architectural facilities for both interfaces. 

End-user interface Typically, the end user is not the same person as the domain expert 
that helped to develop the system. In most cases the system goal is to make the expert's 
knowledge available to (relatively speaking) laypersons. 

For this end-user interface the main architectural design decision is whether the target 
environment delivers you with sufficient "view" power. Does it provide the facilities re-
quired? The state of the art is a graphical direct-manipulation interface. However, if you 
want to have speech recognition and/or generation, then special facilities may need to be 
designed. 
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Expert interface Assuming the domain experts are not the end users of the system, we 
usually need an additional interface to allow the experts to interact with the system. This 
expert interface typically consists of two components: 

1. An architectural facility that allows the expert to trace the reasoning process of the 
system in the terminology of the knowledge model. This allows the expert to see the 
reasoning subsystem "in action" and to identify errors and/or gaps in the underlying 
knowledge. 

2. Facilities to edit, refine, and extend the knowledge bases. An example would be a 
dedicated rule editor, which in the ideal case would be specialized for specific rule 
types. 

In Figure 11.5 an archetype of a tracer interface for the reasoning component is shown. 
The window contains four areas: 

1  In the upper-left part the control structure of the task method that is currently being 
executed is shown. The current locus of control is shown in highlighted form. 

2. The upper-right box shows the inference structure. Inferences blink when these are 
executed. 

3. In the lower-left quadrant the current bindings are shown of the active dynamic roles. 
Each role is shown as a "place" with the name of the role and a listing of the domain 
instance(s) that currently play(s) this role. 

4. Finally, the lower-right part shows the static role for the (last) inference being executed. 
The instances listed are typically rules of a certain knowledge base. 

Such a tracer facility can be of great help in the knowledge refinement stage. 

11.5.11 Summary of Architecture Specification 

Worksheet DM-3 (see Table 11.4) provides a checklist for the decisions that need to be 
taken during architecture specification. 

11.6 Step 4: Specify Application within Architecture 

Finally, the design needs to be completed by specifying the application-specific parts 
within the architecture. We can distinguish two steps in this process: 

Step 4a:  Map the analysis information on the architecture specified in the previous step. 

Step 4b: Add additional details needed for application design. 

We discuss these two steps in turn. 
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Figure 11.5 
Archetype of a tracer interface for the reasoning components. The window contains four areas. In the upper-left 
the control structure of the task method that is currently being executed is shown. The current locus of control 
is shown in highlighted form. The upper-right box shows the inference structure. Inferences blink when these 
are executed. In the lower-left quadrant the current bindings are shown of the active dynamic roles. Each role is 
shown as a "place" with the name of the role and a listing of the domain instance(s) that currently play(s) this 
role. Finally, the lower-right part shows the static role for the (last) inference being executed. The instances listed 
are typically rules of a certain knowledge base. 

11.6.1 Step 4a: Map Analysis Information 

From the reference architecture it will be clear that the analysis information, in particular 
the knowledge model, can be mapped easily onto architecture components, thus creating 
a number of architecture component instances (tasks, inferences, etc.). For example, for 
each task in the knowledge model a corresponding architectural task object needs to be 
created. This mapping process can be done manually or through some automatic means. 
The latter approach is preferred, because it reduces the chance of errors. One criterion 
for implementation environment selection is therefore whether the target environment has 
some mapping support tools. Information about available mapping tools can be found on 
the CommonKADS website (see the preface). 

The scope of the mapping tools may vary. In particular, the following ingredients 
might or might not be present: 
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Design Model Worksheet DM-3: Architecture Specification 
Architecture component Typical decision points 
CONTROLLER Mechanisms for internal/external event handling. Concurrency? 

Interrupts possible? Allow what-if scenarios? User control over 
reasoning strategy? 

TASK Can a task fail? Initialization method. 
TASK METHOD Language for control structure. Define where and in what way the 

internal method control is specified: declarative or procedural. 
INFERENCE Define internal state variable; when should this variable be reset, e.g., 

after task completion? Define operations for execution and "probe" 
tests (has-solution?, new-solution?). 

INFERENCE METHOD Many-to-many mapping from inference to inference method. 
Algorithm should be selected. Catalog of inference methods? 

DYNAMIC ROLE Data types for roles. Access/modification operations for each data 
type. 

STATIC ROLE Define access operation: give-all, give-one, exists-one? 
KNOWLEDGE BASE Decide about rule-instance representation. Define access and 

modify/analyze methods. Cf. the domain-expert interface. 
VIEWS Standard graphical direct-manipulation interface? Special facilities 

required (e.g., natural language production)? Different interface: 
end-user, expert-user. Provide generic tracing facilities? 

Table 11.4 
Worksheet DM-3: Checklist of decisions with respect architecture specification. 

• Automatic creation of the control-structure specification 
• Automatic creation of the rule instances 
• Automatic creation of controller objects 

For controller objects CommonKADS does not provide much in terms of standardized 
object descriptions, which means that extensive mapping support is unlikely to be present 
for this part. 

11.6.2 Step 4b: Add Design-Specific Details 

In this section we list the additional design decisions that need to be made for a certain 
application. The decisions are discussed in connection with the component involved. Three 
components are not mentioned, because they do not require any further application design 
after their mapping in step 4a: tasks, static roles, and domain constructs. 

Controller As we saw in step 4a, in most cases the designer will have to do some hand-
work to transform the communication model into a controller specification. . The amount 
of work needed depends heavily on the facilities required here. As a minimum, a boot-
strapping procedure is needed for starting the system. Event handlers for obtaining user 
information are almost always necessary as well. 

Alb 
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Some complicating factors for controller design are: 

• Complex external interaction (cf. Homebots system). 
• Strong user control over the reasoning process. An example of such a system is the 

system developed by Post et al. (1996), which supports the dispatching of ambulances 
by emergency call operators. Due to potential time constraints, the system control 
needed to be extremely flexible and adaptive. 

• Need for "what-if" scenarios. 
• Need for concurrent reasoning processes. 
• Need for demon-like behavior. In this case you have to define when the system should 

become active through an agenda mechanism. 

In case of a real-time system, the designer should become familiar with the specialized 
literature on this subject. 

Task method Formalize the method control structure in the control language provided 
by the architecture. 

Inference Write a specification of the invocation of an inference method. This method 
invocation should show how the dynamic and static roles map onto arguments of the infer-
ence method. Often, some "massaging" of the inputs is necessary, as the representation of 
roles is purposely not optimized for reasoning purposes. 

Inference method For each inference the designer needs to specify or select an inference 
method. These methods can be reasoning methods described in the AI literature, or simple 
standard algorithms (sorting, subset selection, etc.). 

Dynamic role Choose a datatype for each role. This choice is constrained by the 
datatypes provided by the architecture. Use real role sets (instead of lists) whenever pos-
sible, as it leads to more natural dynamic behavior (random selection of set elements and 
therefore more reasoning-behavior variation). 

Views The choice of the type of view (e.g., a browser or a menu) is guided by general 
user-interface design principles, which are already described adequately in other works. 
Chapter 17 of Sommerville (1995) is a good starting point and provides a set of useful 
guidelines. In the case of the end-user interface the choice of the view types should be 
strongly guided by available application-domain representations. 

Guideline 11-3:  CHOOSE VIEWS THE END USER IS ALREADY FAMILIAR WITH 
Rationale: Still too often computer scientists try to impose on end users representations 
that they like themselves. Typically, each application domain has its own "views" of infor-
mation, which have developed over the years and have proved their worth in practice. It is 
usually best to try to base your views as much as possible on these existing representations. 
It considerably raises your chances of user acceptance. 
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Design Model Worksheet DM-4: Application Design 
Element Design decision Comments 
CONTROLLER Translate communication-plan control 

plus the transactions into event 
handlers. 

Need for real-time behavior? Need for 
concurrency? Need for user control 
over reasoning? 

TASK METHODS Formalize control structure. Strongly constrained by control 
language provided by the architecture. 
Some mapping tools already do this 
task for you. 

DYNAMIC 
ROLES 

Choose a datatype for each role. Constrained by datatypes provided by 
architecture. Use real role sets 
(instead of lists) whenever possible, as 
it leads to more natural reasoning 
behavior (random selection). 

INFERENCES Write a specification of the invocation 
of the inference method(s). 

This method invocation should show 
how the dynamic and static roles map 
onto arguments of the method. Often, 
some "massaging" of the inputs is 
necessary, as the role representation of 
(static) roles are purposely not 
optimized for reasoning purposes. 

INFERENCE 
METHODS 

Specify or select inference methods. Choose an appropriate reasoning 
technique or algorithm. Limit the 
number of methods by trying to use a 
method for more than one inference. 

KNOWLEDGE 
BASES 

Translate knowledge-base instances 
into the representational format 
provided by the architecture. 

Some mapping tools already do this 
task for you. 

VIEW OBJECTS Select appropriate views for the 
application-model and the controller 
objects. 

For the end-user interface: use as 
much as possible domain-specific 
representations. 

Table 11.5 
Worksheet DM-4: Checklist for application-design decisions. 

11.6.3 Summary of Application Design 

Worksheet DM-4 (see Table 11.3) provides a checklist for the various application-design 
decisions that need to be taken. 

11.7 Design of Prototypes 

"Rapid prototyping" has a bad reputation because the term has been used to refer to 
quick-and-dirty partial implementations that never scale up. However, in modern project-
management (see Chapter 15) prototyping is a well-articulated technique to try out a 
"risky" or poorly understood part of the prospective system. We briefly discuss two types 
of prototype design. 

  

II 
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11.7.1 Prototype of the Reasoning System 

There are two standard situations in which it may be useful to develop a prototype of the 
reasoning part (without an elaborate controller or user interface) : 

• The knowledge model is not based on an existing task template, but is constructed "by 
hand." In this case there is usually a risk that the reasoning behavior will be different 
from what the analyst expects. 

• There seem to be gaps in the domain knowledge but it not clear what these gaps pre-
cisely are. 

Prototypes of the reasoning engine should allow us to trace the reasoning process in 
knowledge-model terms and therefore need an interface such as sketched in Figure 11.5. 
Such a reasoning trace can give the expert or the knowledge engineer a deeper insight 
into the "knowledge-model dynamics" and reveals problems or errors that are not apparent 
from the static knowledge-model description. 

To carry out this type of prototyping without spending a large amount of time (and 
resources) on it, it is important to have some tools available for supporting the prototype 
generation. In particular, the knowledge-model mapping tools are important in addition 
to an implementation environment with a "CommonKADS package." With the right tools 
designing and implementing a prototype should normally be achievable within a matter of 
days. 

11.7.2 Prototype of the User Interface 

Often, it is also useful to build early on a prototype of the user interface, containing both 
"controller" and "view" objects. In particular, if either the views or the controller require 
complex representations, such prototypes are useful. In case of complex user-system re-
quirements, such a prototype plus some associated user experiments might be the only 
way of getting the information necessary for a proper communication model. Again, see 
the work of Post et al. (1996) for an example of this type of prototyping. 

11.8 Distributed Architectures 

Increasingly, applications are built in a distributed fashion. With "distributed" we mean 
that subsystems of a single application are spread over multiple physical sites. This is not 
the place for a detailed discussion on this topic. We limit the discussion to three potential 
ways in which knowledge-system components can be used in a distributed architecture. 

1. Reasoning service The most straightforward way of distributed usage is to make 
the bare reasoning engine available as a "service" without any real user interface and 
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without event handlers. For example, the residence-assessment application could be 
made available such that only the "knowledge-model" elements are implemented. This 
application could be accessed by potential applicants to test the residences they want 
to apply for. It is fair to say that this approach is only in a limited way "distributed." 

2. Knowledge-base/ontology server There is a growing need to standardize, share, 
and exchange knowledge descriptions. For example, efforts are underway to build 
"knowledge-rich" thesauri to define the relevant terms in diverse fields such as 
medicine and art. The domain descriptions can be modelled with the CommonKADS 
domain-knowledge constructs. We can then implement a broker that delivers on re-
quest a domain-knowledge element, such as a standardized description of a Chinese 
vase of a certain period. The first generation of these systems is currently being built. 
A good example of the possibilities is the terminology server for art objects built in the 
context of the European research project GRASP (Wielinga et al. 1997). The server 
is part of a distributed system that assists in finding the rightful owners of stolen art 
objects. 

3. Method service One can imagine that implementation of the various task templates 
can be used as services in a distributed system. The domain knowledge would in that 
case be provided by the client, who may actually be able to get this domain knowledge 
from another server (see the previous point). The practical use of this type of service 
is, however, still a research issue. 

If you are seriously considering building an application with distributed characteristics, 
you will want to choose an implementation language in step 2 that supports a protocol for 
distributed systems. A popular protocol is the CORBA architecture (Ben-Natan 1995). 

11.9 Bibliographical Notes and Further Reading 

There is not much literature on design of knowledge systems. The best approach to get 
a background in this field is to study a modern text on software design in general, and to 
specialize this for design of knowledge systems. 
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Knowledge-System Implementation 

Key points of this chapter: 

• CommonKADS really works: you can actually build a running system. 
• System implementation can still be hard work, but is relatively straightfor-

ward once you have done your CommonKADS groundwork. 
• We show two implementations of the housing case. The languages were 

chosen for convenience: other choices could work equally well. 
• The first implementation in Prolog follows the design rules set out in Chap-

ter 11 strictly, and shows a full structure-preserving implementation. 
• The second implementation in AionDS 8.0 shows how a CommonKADS 

application can be realized in a popular 0-0-based environment used in 
business. 

You might have wondered while reading about all this model stuff in previous chapters: 
does this paperwork ever lead to something that works? The answer is yes! In fact, imple-
mentation of CommonKADS models is usually relatively straightforward. It may still be 
a reasonable amount of work, particularly if there are specific user-interface requirements, 
but there should not be any major obstacles left. 

In this chapter we show how you can implement a CommonKADS analysis and de-
sign in two sample implementation environments. One is a public domain Prolog envi-
ronment and is particularly targeted to the academic community. The other environment 
is Platinum's AionDS version 8.0 (nicknamed Aion), an environment which integrates an 
object-oriented and a rule-based approach and is used in business practice. However, we 
should stress that our choice is in a sense arbitrary and is based on convenience (in partic-
ular, availability). The sample application is the housing application, the analysis of which 
is described in Chapter 10. The source code of both implementations can be found at the 
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Figure 12.1 
Software architecture of the Prolog implementation. The software on top of Prolog can be conceived of as con-
sisting of three layers. The first layer implements object-oriented concepts on top of Prolog and implements the 
underlying view-update facilities required for the MVC architecture. The second layer implements in a generic 
way the mapping of CommonKADS objects on the MVC architecture. The third layer is the implementation 
of the actual application. The inference-method library is an additional architectural facility that provides im-
plementations of algorithms frequently used for realizing inferences, e.g., rule-based reasoning. This library is 
implemented directly on top of Prolog. 

CommonKADS website (see the preface). For the Prolog implementation a link is added 
to the download site of the Prolog system used. 

12.1 Implementation in Prolog 

12.1.1 Overview 

The implementation described here uses the public domain SWI-Prolog system 
(Wielemaker 1994) which runs on Windows95 and UNIX platforms (see the Com-
monKADS web-site for more information). The implementation is intended purely for 
educational purposes. No efforts have been made to add gadgets such as syntax checking, 
editors, and so on. Detailed analysis of the code will undoubtedly reveal places where the 
implementation contains bugs or can be improved. Still, we hope it serves its role as an 
insightful example of an implementation. 

Figure 12.1 shows the main elements of the software architecture of the Prolog im-
plementation. The software can be conceived of as consisting of three layers, i.e., two 
architectural layers and one application layer: 

1. The first layer implements object-oriented concepts on top of Prolog and provides the 
underlying view-update facilities required for the MVC architecture (the 0-0 kernel in 
Figure 12.1). 
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2. The second layer contains class, attribute, and operation definitions for generic Com
monKADS objects (the CommonKADS kernel in Figure 12.1). These definitions pro-
vide the building blocks for realizing a CommonKADS application in an MVC-like 
architecture. 

3. The third layer is the implementation of the actual application: it constitutes a special-
ization of the generic objects of the CommonKADS kernel. It implements the "model," 
"view," and "controller" objects of the actual application. 

The next subsections discuss these three layers in more detail. The inference-method 
library is an additional architectural facility that provides implementations of algorithms 
frequently used for realizing inferences, e.g., rule-based reasoning. This library is imple-
mented directly on top of Prolog and is used in the realization of the housing application. 

12.1.2 Baseline Architecture 

We first implemented a small set of 0-0 primitives on top of Prolog. The primitives 
provide a simple typing system on top of Prolog. The purpose of these primitives is to 
simplify the mapping from the CommonKADS design as shown in Figure 11.4 onto the 
Prolog code. Thus, it is meant to ensure a transparent structure-preserving implementation. 

The object-oriented primitives fall into three classes: 

1. definitions of classes, attributes, and operations; 
2. actions such as creating an object, changing attribute values, and invoking operations; 
3. queries such as asking for the current value of an attribute and checking the super-

classes of a class. 

Figure 12.2 gives an overview of the main 0-0 primitives. For more details the reader 
is referred to the source code. The 0-0 layer also provides architectural facilities for the 
separation of application objects from their visualization. This is done by including a 
mechanism that broadcasts any change in an object state. Such state changes can be the 
creation of an object or a change of an attribute value. As we will see, the view subsystem 
can catch such messages to update object visualizers. 

12.1.3 Implementing the CommonKADS Architecture 

Using the 0-0 primitives discussed above, we implemented the CommonKADS architec-
ture described in the previous chapter. This architecture should allow an easy mapping of 
the communication model onto the "controller" subsystem and of the knowledge model 
onto the "model" subsystem. The architecture of the latter subsystem is in fact a more 
or less direct implementation of the subsystem decomposition shown in Figure 11.4. The 
classes, attributes, and operations defined in the CommonKADS Prolog architecture are 
shown in Figure 12.3. 
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% DEFINITIONS 

def_class(+Class, +ListOfSuperClasses) 
def_attribute(+Class, +Attribute, +ValueType, +Cardinality). 
def_operation(+Class, +Operation, +List0fArgumentTypes, +RetrunType). 
def_value_type(+ValueType, +NominalOrOrdinal, +ListOFValues). 

method(+Class, +Operation, +Object, +Input, -Output). 
method(+Class, +Operation, +Input, -Output). 

% ACTIONS 

create(+Class, ?ObjectlD, +List0fAttributeValues). 
put_attribute_value(+ClassOrObject, +Attribute = +Value). 
invoke(+ObjectOrClass, +Operation, +Input, -Output). 

% QUERIES 

get_attribute_value(+ClassOrObject, +Attribute = -Value). 
has_base_class(+ObjectOrClass, ?Class). 
is_a(+ObjectOrClass, ?Class). 

Figure 12.2 
Informal specification of the main predicates available in the 0-0 layer on top of Prolog. The plus indicates 
that the argument needs to be bound when the predicate is called; the minus indicates that the variable will be 
bound by execution of the predicate; arguments preceded by ? can either be bound or unbound. For example, the 
predicate "is-a" can be used both to find an immediate superclass of an object (second argument is unbound) or to 
check whether this the case for a particular superclass (second argument is bound). Operations may have a void 
return type: in that case the "invoke" predicate will return an empty list []. 

The classes shown contain the information contained in the knowledge and commu-
nication model. This is in accordance with the structure-preserving principle. In addition, 
these class definitions contain implementation-specific extensions. We distinguish two 
types of extensions: 

1. architecture-specific extensions which concern code that can be written generically (the 
same for each application); 

2. application-specific extensions which point to the code that needs to be added for each 
individual application. 

Our goal is to keep these application-specific extensions as minimal as possible. This en-
ables fast construction of prototype systems. In the Prolog architecture we have included 
only simple facilities for handling the communication model. It only supports (like Prolog 
itself) a single thread of control. Therefore, the transactions need to be implemented as 
standard procedure invocations. The Prolog environment has limited use in highly interac-
tive systems and is mainly intended for prototyping of the knowledge model. 
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<controller object> 
transaction 

input: list(dynamic role) 
output list(dynamic role) 
communication-type: 

{obtain, receive, present, provide} 
status: (active, finished} 

execute() 
handler() 

<model object> <model object> <model object> 
function task method knowledge role 

input roles: list(dynamic role) realizes: task domain mapping: 
output roles: list(dynamic role) domain construct 
specification: text execute() 

A A 

   

<model object> 
task 

 

<model object> 
inference 

<model object> 
dynamic role 

<model object> 
static role 

domain name: string 
goal: text 
realized by: task method 
status: {activated, terminated) 

execute() 

operation name: string 
static roles: list(static role) 
status: (succeeded, failed) 

execute() 
has solution() -> boolean 
method call() 

contents: list(universal) 
datatype: (element, set, list} 

store(universal) 
retrieve() -> universal 
is empty() -> boolean 
get member() -> universal 
is-member(universal) -> boolean 
select)) universal 
add(universal) 
delete(universal) 

knowledge base: 
knowledge base 

retrieve() -> set(universal) 

<model object> <model object> 
domain construct knowledge base 

uses: list(domain construct) 

<model object> <model object> <model object> 
concept binary relation rule schema 

argument 1: domain construct antecedent domain construct 
argument 2: domain construct consequent: domain construct 

connection symbol: string 

Figure 12.3 
Classes for the "model" and the "controller" subsystem of the Prolog architecture. Only one controller class is 
included: "transaction." The signature of operations is defined in a sketchy manner. The keyword "universal" 
stands for any object. 
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Architecture-specific extensions Architecture-specific extensions need only be defined 
once for the architecture. The application builder does not need to be concerned with 
these extensions. An example of such an extension is the implementation of the execute 
operation defined on a task. The implementation of this operation can be defined at the 
architecture level, because it just invokes the execute operation of the corresponding task 
method. Note that this assumes we have defined only one possible method per task. In 
case of multiple task methods (see Chapter 13) the operation implementation needs to be 
defined by the application to indicate how a specific task method is chosen. 

Another example of a architecture-specific extension is the addition of a status at-
tribute to transaction, task, and inference. As we will see, the value of this attribute is 
used by the trace facility in the "view" subsystem. This is a typical implementation-specific 
extension: during knowledge analysis this attribute is not of interest. 

Application-specific extensions A number of extensions need to be defined for each 
application. This can be considered the "real" implementation work for an application. At 
least the following extensions need to be defined for implementing an application: 

• For each transaction in the communication model: define an implementation of the 
handler operation.This handler should implement the information transfer in and out 
of the system. For example, the "get-case" transaction contains the code for retrieving 
data about a case that needs to be assessed from a database of cases. 

• For each task method: define an implementation of the execute operation. This code 
should implement the control structure of the task method using the control primitives 
provided by the architecture. 

• For each inference: define an implementation of the method-call operation. This oper-
ation is responsible for specifying how the inference is realized using existing or newly 
coded inference methods. The Prolog architecture has a small catalog of predefined in-
ference methods, including a rule interpreter which can handle backward and forward 
reasoning. 
The implementation of the method-call operation can contain any "hack" you want, 
because the internals of an inference are assumed to be of no interest to the user. 

• For each dynamic role: specify the value of the datatype attribute. In the Prolog 
architecture this value can be an element, set (unordered collection, no duplicates), 
or list (ordered collection, duplicates allowed). 

In the next subsection we see how these three types of application-specific extension 
are defined for the housing application. 

12.1.4 Realizing the Housing Application 

As we saw in Chapter 11, realizing the application in fact consists of carrying out three 
implementation activities: 
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1. mapping analysis objects onto the architecture; 
2. coding the implementation-specific extensions of the analysis objects (see the list of 

four items in the previous section); 
3. coding the required application views to realize the user interface and possibly other 

interfaces. 

Mapping the analysis objects This step is carried out by specializing the 
CommonKADS-specific classes defined in the architecture. Thus, the task ASSESS-CASE 
is defined as a specialization of the class task. The reader is referred to the Prolog code at 
the CommonKADS website for examples. This mapping process form knowledge model 
to implementation should typically be supported by an appropriate CASE tool that handles 
the code generation from the knowledge-model specification. Manual transformations are 
tiresome and error-prone, and should be avoided as much as possible. 

Coding the implementation-specific extensions In this second step one has to write 
additional code for the four items identified earlier: (1) defining data types for dynamic 
roles, (2) writing an implementation for each method-call operation for each inference, 
(3) writing an implementation of the execute method of each task method, and (4) writing 
handlers for each transaction. Examples of this code for the housing application are shown 
in Figure 12.4. The implementation of the method call for the inference evaluate is a 
typical example of what one has to do when implementing an inference. 

The implementation consists of the following steps (see Figure 12.4): 

1. The various inputs for the inference are retrieved using operation calls on the respective 
dynamic and static roles. This particular inference is in fact a bit more complex than 
usual, because part of its dynamic input is in fact a rule set (the case-specific require-
ments). The implementation joins the static and the dynamic rule sets into one rule set 
(see the append clause). The first two retrievals concern the two other dynamic input 
roles. 

2. The rule interpreter is invoked. This is a predefined method which can do forward as 
well as backward reasoning. For the evaluate inference, backward reasoning is used 
(cf. the first argument of the predicate). The second and third arguments are, respec-
tively, the rule set and the data set used for backward reasoning. Finally, the fourth 
argument of the predicate is the goal that needs to be proved by backward reason-
ing. In this case the goal is to find a truth value for a norm. We can see that for this 
inference the operational interpretation is apparently that successful execution of the 
"requirement" rules means the norm is true. Only in case no rule is successful does the 
norm get a "false" value. 

3. Finally, the result is placed in the output role norm-value.  

The implementation of the execute operation for the task methods should be more or 
less a direct implementation of the control structure of the task method. For example, 
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/* 
Step 4b: Adding implementation-specific decisions 

* /  

% data types of dynamic roles 

def_class_value(norm, data_type - element). 
def_class_value(norm_value, data_type = element). 
def_class_value(norms, data_type = set). 

% linking inferences to method calls (here: the rule interpreter) 

method(evaluate, method_call, [], []) :- 
invoke(norm, retrieve, [], Norm), 
invoke(abstracted_case, retrieve, [], Case), 
invoke(requirements, retrieve, [], StaticRules), 
invoke(case_specific_requirements, retrieve, [1, DynamicRules), 
union(StaticRules, DynamicRules, Rules), 
if(rule_interpreter(backward,Rules,Case,Norm:truth_value.true), 
then(invoke(norm_value, store, Norm:truth_value = true, [1)), 
else(invoke(norm_value, store, Norm:truth_value = false, [1))). 

% implementation of control structures of tasks 

method(match_method, execute, [1, [1) :- 
invoke(specify, execute, [1, []), 
repeat( 

(  invoke(select, has_solution, [1, true), 
invoke(evaluate, execute, [1, []), 
invoke(norm_value, retrieve, [], NV), 
invoke(evaluation_results, add, NV, [1)), 

until(invoke(match, has_solution, [], true))). 

Figure 12.4 
Application-specific code for the housing system. 

compare the code at the bottom of Figure 12.4 with the control structure of the MATCH 
method in the knowledge model. The main difference is that I/O is done "behind the 
scenes" (an implementation detail). 

The reader is referred to the source code for details of the implementation of the trans-
actions (which were kept simple in the housing case). 

Coding the views Finally, we need to write the required view implementations. In our 
sample system we only included some simple views to allow tracing the system execution. 
Most of the views currently in the Prolog code are generic: they can be used for other 
applications as well. Views often have a compositional structure. For example, in the 
Prolog implementation there is one large application window frame, consisting of three 



Transaction "order assessment" is active 
Transaction "get_case" is active 
Transaction "get_case" is finished 
Task "assess case" has been activated 

New value for role "case_id": 
1 

New value for "case description': role 

residence:category.starter_residence 
residence:build_tvpe.house 
residence:street_address.Van Houtlein 5 
residence: city -Utrecht 
residence,num_rooms.4 
residence:rent.442 
residence:min_nun_inhabitants-2 
residence:max_num_inhabi tants..4 
residence: subsidy_type-subsidizable 
residence:surf ace_in_square_meters.94 
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applicant :applicant_tvoe.starter 
applicant :name.N.N. 
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aPPlicant:citv•Utrecht 
applicant:age-21 
applicant.gross_vearly_income•36000 
applicant:household_size•2 

New value for role "case_specific_requirements": 
residence_specific_constraints:truth_value.tr 
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Figure 12.5 
Starting the assessment of a residence application. The data of the case to be assessed are shown at the right. For 
this case, there are no case-specific requirements. 

subviews. These subviews are represented as text windows which show information about 
transaction, task, and inference activity, as well as changes in dynamic role values. The 
views are shown in the next section (Figures 12.5-12.8). 

12.1.5 Running the Application 

Included are a number of screen dumps that give the flavor of the Prolog housing appli-
cation in action. In Figure 12.5 we see the start of the assessment process for a particular 
residence application. The data of the case to be assessed are shown at the right. For this 
case, there are no case-specific requirements. The interface used here is a simple generic 
tracer that is used for validation prototypes. The application window consists of three 
areas. In the upper-left text area state changes of transactions and tasks (i.e., activation, 
termination) are written. In the lower-left area the success and failure of inference exe-
cution is reported. The text area at the right is used to report changes in the contents of 
dynamic knowledge roles. The system halts each time some new piece of information is 



304 Chapter 12 

; merit of .1 it.,1 , 1 ,11, App 

Transaction "order assessment" is active r.  
Transaction "get_case" is active 
Transaction "get_case" is finished 
Task "assess case" has been activated 
Task "abstract case" has been activated 

AL.T.TIE 
Inference "abstract" has started 
Inference "abstract" has succeeded 
Inference "abstract" has started 
Inference "abstract" has succeeded 

residence,num_rooms=4 
residence•rent=442 
residence:min_num_inhabitants=2 
residence' max_num_inhabi tants=4 
residence.subsidy_type=subsidizable 
residence:surf ace_in_square_meters=94 
applicant :regsitration_number=xyza-240690 
applicant :applicant_type=starter 
applicant : name-N. N. 
applicant :street_address=Ijzerlaan 10 
applicant :city=Utrecht 
applicant ,age=21 
applicant :gross_yearly_income=36000 
applicant :household_size=2 
applicant :household_type=multi_person 

Nev value for role "abstracted_case": 
residence: number=11274 
residence:category=starter_residence 
residence: build_type-house 
residence: street_address=Van Houtlein 5 
residence:city=Utrecht 
residence:num_rooms=4 
residence,rent=442 
residencelm in_num_inhabi t ant s= 2 
residence:max_num_inhabitants=4 
residence: subsidy_type=subsidizable 
residence:surf ace_in_square_meters-94 
applicant: regsitration_number-xyza-240690 
applicant :applicant_type=starter 
applicant :name-N.N. 
applicant ,street_address-Ijzerlaan 10 
aPplicant,city=Utrecht 
applicant:age=21 
applicant :gross_yearly_income=36000 
applicant :household_size-2 
applicant :household_type=multi_person 
applicant :age_ca tegory=upto 22 

Figure 12.6 
The task "abstract-case" has finished. It has produced two new case attributes: the age category and the household 
type (see the last two lines of the role "abstracted-case-description"). 

written in one of the text areas, and waits for the user to press the continue button (see 
bottom of the window). 

In the second figure (Figure 12.6) the task ABSTRACT-CASE is being carried out. 
As we see in the lower-left box, the abstraction inference has succeeded two times and 
produced two new case attributes: the age category and the household type (see the last 
two lines of the role abstracted-case-description. Once the inference fails, the abstraction 
task will be terminated. 

In Figure 12.7 we see that the MATCH-CASE task has been activated. Four norms 
have been specified as being relevant to this case. One norm has been (randomly) selected, 
namely correct -household - size. This norm is evaluated and turns out to be true for 
this case. The match inference does not deliver a decision. This means that the select-
evaluate-match loop needs to be repeated for other norms. 

Finally, in Figure 12.8 we see the termination of the assessment process for the sample 
case. All norms have been evaluated and have been found to be true for this case (see 
the role evaluation-results).  This leads to the decision that the applicant is eligible for the 
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Transaction "order assessment" is active 
Transaction "get_case" is active 
Transaction "get_case" is finished 
Task "assess case" has been activated 
Task "abstract case" has been activated 
Task "abstract case" has been terminated 
Task 'match_case" has been activated 

Inference "abstract" has started 
Inference "abstract" has succeeded 
Inference 'abstract" has started 
Inference "abstract" has succeeded 
Inference "abstract" has started 
Inference "abstract" has failed 
Inference "specify" has started 
Inference "specify" has succeeded 
Inference "select" has started 
Inference 'select" has succeeded 
Inference "evaluate" has started 
Inference "evaluate" has succeeded 
Inference "match" has started 
Inference "match" has failed 

residence,street_address-Van Houtlein 5 
residence:city=Utrecht 
residence,num_rooms-4 
residence,rent=442 
residence,min_num_inhabitants=2 
residence:max_num_inhabitants=4 
residence:subsidv_type.subsidizable 
residence,surface_in_square_meters=94 
applicant:regsitration_number=xyza-240690 
applicant,applicant_type=starter 
applicant,name=N.N. 
applicant:street_address=Ijzarlaan 10 
applicant:city=Utrecht 
applicant:age=21 
applicant,gross_yearly_income=36000 
applicant,household_size=2 
applicant:household_type=multi_person 
applicant:age_category=upto 22 

New value for role "norms": 
rent fits income 
residence_specific_constraints 
correct_residence_category 
correct_household_size 

New value for role "norms"' 
rentfits_income 
residence_specific_constraints 
correct_residence_category 

New value for role "norm": 
correct_household_size 

New value for role "norm value": 
correct_household_size: truth_value-true 

New value for role "evaluation_results": 
correct_household_size:trut1Lvalue=true 

Figure 12.7 
The match case task has been activated. One norm has been (randomly) selected, namely "correct-household-
size." This norm is evaluated and turns out to be true for this case. The match inference does not deliver a 
decision, so the process needs to be repeated for other norms. 

residence in question. The execution of the "report-decision" transaction is the final system 
action. 

12.2 Implementation in Aion 

12.2.1 Overview 

The second CommonKADS implementation of the housing application uses the imple-
mentation environment AionDS. This environment is used in business practice. The 8.0 
version (also called Aion) has an object-oriented basis (classes, attributes, methods) with 
rule-based extensions, such as rule-definition formats and rule-execution methods. The 
code of the implementation can be downloaded from the CommonKADS website. You 
will require the Aion environment to be able to run it. 

Although the environment is a different one, the implementation is in essence quite 
similar to the Prolog implementation described in the previous section. Figure 12.9 gives 
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Transaction "order_assessment" is active 
Transaction "get_case" is active 
Transaction "get_case" is finished 

: Task "assess case" has been activated 

'14 
 T

ask "abstract case" has been activated 
Task "abstract case" has been terminated 
Task "match_case" has been activated 
Task "match_case" has been terminated 
Task "assess_case" has been terminated 

: Transaction "report_decision" is active 
Transaction "report_decision" is finished 

Transaction "order_assessment" is finishe 
d 

 

correct_household_size,truth_value=true 
ccrrect_residence_category:truth_value=true 

New value for role "norms": 
rent_fits_income 

New value for role "norm", 
residence_specific_constraints 

New value for role "norm_value": 
residence_specific_constraints,truth_value=true 

New value for role "evaluation results": 
correct_household_size:truth_value=true 
correct_residence_category: truth_value=true 
residence_specific_constraints,truth_value=true 

New value for role "norms": 
[ 

New value for role "norm": 
rent_fits_income 

New value for role "norm value": 
rent_fits_income:truth_value=true 

New value for role "evaluation_results": 
correct_household_size:truth_value=true 
correct_residence_category:truth_value=true 
residence_specific_constraints: truth_value=true 
rent_fits_income:truth_value=true 

New value for role "decision": 
residence_decision:value=eligible 
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 Inference "evaluate" has started 
Inference "evaluate" has succeeded 
Inference "match" has started 
Inference "match" has failed 
Inference "select" has started 
Inference "select" has succeeded 
Inference "evaluate" has started 
Inference "evaluate" has succeeded 
Inference "match" has started 
Inference "match" has failed 
Inference "select" has started 
Inference "select" has succeeded 
Inference "evaluate" has started 
Inference "evaluate" has succeeded 
Inference "match" has started 
Inference "match" has succeeded 

  

   

   

        

        

Figure 12.8 
The termination of the assessment process. All norms have been found to be true for this case (see the role 
"evaluation-results"), so the decision is that the applicant is eligible for the house in question. 

an overview of the architecture. Each box in this figure represents an Aion library. The 
architecture consists of four layers: 

1. Framework layer This layer provides the basic architectural facilities underlying the 
implementation. The application was built in such a way that it constitutes a framework 
for realizing task-oriented applications. CommonKADS-based applications fall into this 
category. The design principles of this framework are discussed in the next subsection. 
This layer is implemented as a single Aion library (the f ramel ib). 

2. CommonKADS layer This layer is in many respects similar to the CommonKADS 
layer in the Prolog architecture. It provides a set of Aion object classes which can be used 
to implement the CommonKADS analysis objects. For the moment, the Aion implemen-
tation is limited to knowledge-model objects. This layer is also implemented as a single 
Aion library (the commonkads lib). 

3. Task-template layer  The architecture has a special layer for constructing implemen-
tations of task templates. These can be seen as generic implementations of tasks, which 
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assessment 
framework 

Figure 12.9 
Architecture of the Aion implementation. The solid boxes have been implemented. The dashed boxes are possible 
additions. 

have to be "instantiated" for a particular application. For this application the assessment 
template has been implemented. Other templates can be added at will. Each template is 
implemented as a separate Aion library (in this case the assessment 1 ib). 

4. Application layer  The uppermost layer contains the actual application-specific code 
for the system. Each application is implemented as a separate Aion library. Because the 
need for class specialization is avoided (see further), task templates can be connected to 
empty applications. The source code at the website contains the library file for the housing 
application (the hou s ngl ib). 

Compared with the Prolog implementation, the Aion implementation has one addi-
tional layer: the "task-template" layer. The Aion system is in this respect more sophis-
ticated, as it supports more refined forms of reuse. The Aion implementation splits the 
"model" subsystem of the MVC architecture into two subparts: a domain-independent, 
task-specific part (i.e., the implemented task template) and a part containing the model el-
ements that represent knowledge specific to the application domain. This makes it easier 
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Figure 12.10 
Aion screen showing classes and interfaces of the framework library. 

to use part of the "model" for other applications that incorporate the same template. In the 
following each of the respective layers is described in more detail. The final subsection 
shows traces of the running system. 

12.2.2 Framework Layer 

Frameworks in general The implementation is realized in the form of a framework. 
An object-oriented framework is defined as an extendible subsystem for a set of related 
services (D' Souza and Wills 1998). A framework consist of a cohesive set of classes that 
collaborate to provide services. A framework typically uses a control regimen based on the 
so-called Hollywood principle: "don't call us, we'll call you." This call-back mechanism 
enables the system developer to construct an application in the framework by supplying 
application-specific code for the hooks provided by the framework. The framework pro-
vides, wherever possible, default implementations for the hooks (see further). 

Two types of frameworks are being distinguished: (1) domain-oriented frameworks 
that are aimed at the information structure in a domain and, (2) agent-oriented frameworks 
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that are applicable if the work of an actor or a task needs to be implemented. Implementing 
CommonKADS requires an agent-oriented framework. The knowledge model and the 
communication model are in fact descriptions of the possible behaviors of an agent carrying 
out a knowledge-intensive task. 

Framework for the housing application The Aion housing application is implemented 
as an agent-oriented framework. The framework layer provides the basic facilities for re-
alizing an application framework. It defines a general notion of frame-agent representing 
an active actor-like object class. The frame agent is subsequently specialized within the 
class task. A notion of task does not exist in Aion, and therefore had to be added. To the 
class TaskObject methods are attached for starting and terminating tasks, 

The implementation of the framework makes heavy use of the concept of "interface." 
An interface in Aion is similar to an interface in the programming language Java. It is 
best viewed as a class definition without definitions of internals of the class. Interfaces 
are effectively used to overcome the limitations of single inheritance, allowing class and 
behavior patterns to be added to existing classes. The interfaces specify the roles that need 
or can be played by application objects. In the following sections we show some examples 
of how interfaces can be used to define CommonKADS classes. Figure 12.10 shows classes 
and interfaces defined in the framework library. 

The framework layer includes one small other library, namely a coded form of the 
"observer" pattern. This design pattern (Gamma et al. 1995) defines a generic way to 
monitor the state changes in classes. The observer pattern has been used as basis for a 
CommonKADS-specific trace facility. 

12.23 CommonKADS Layer 

Similar to the Prolog implementation, the CommonKADS layer of the Aion system de-
fines a number of classes for CommonKADS objects. Inferences and tasks are defined as 
subclasses of the frame-agent class hierarchy in the framework library. Inferences and 
tasks are thus the "active" objects that can have a status such as "activated" or "termi-
nated" (cf. the status attribute for the same objects in the Prolog system). Dynamic roles 
are introduced as interfaces, i.e., IDynamicRole (the "I" character at the beginning is the 
convention used here to denote interfaces), as these require a binding to an application 
object. 

Figure 12.11 shows a part of the Aion classes defined in the CommonKADS layer. 
The interface mechanism described in the previous section is used to provide for each class 
definition a specialization hook such that the application can refine or override the generic 
code provided by this layer. For example, for the class inference an interface is defined, 
in this case IInference. The purpose of this interface is to allow the application developer 
to write an object class definition that implements the role defined by the interface, and in 
this way extend or overwrite the generic implementation of an inference. 
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Figure 12.11 
Aion classes and interfaces defined for the CommonKADS layer. 

The CommonKADS layer also contains a number of predefined inferences. So far, 
only the inferences that are used in the assessment template are included, but more infer-
ences could easily be added. Typically, one would want to supply default implementations 
for all inferences that occur in the inference catalog of this book (cf. Chapter 13). These 
default inference implementations are a example of the principle of maximizing both sup-
port as well as flexibility. One could argue that these generic inference implementations 
should be part of the task-template layer, but the developers quite understandably decided 
that most are applicable in a wider context than just a single task. The interfaces of type 
IInferenceable specify the roles for the generic inference implementations. 

In addition to the CommonKADS model classes (as said before, the communication 
model was outside the scope of this system) the CommonKADS layer also provides the 
generic facilities for tracing the behavior of the active objects (i.e., task, inferences, and 
dynamic roles) in the implementation. This CommonKADS tracer uses a generic imple-
mentation of the observer pattern (see above). The CommonKADS tracer displays in a 
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Figure 12.12 
A number of sample classes in the assessment library. This library is part of the task-template layer of the 
Aion framework for implementing CommonKADS systems. Each library in this layer should provide a default 
implementation of a certain task type. 

similar manner to the Prolog tracer an account of the reasoning process in terms of the 
behavior of tasks and inferences, as well as the state changes of dynamic roles. In the 
examples of the running Aion system you will see this CommonKADS tracer in action. 

12.2.4 Task-Template Layer 

This layer, which is not present as a separate entity in the Prolog system, makes use of 
the notion of template knowledge model in CommonKADS. Here one can see clearly the 
parallel with design patterns in 0-0. The task templates are precisely what one would 
expect from a pattern for a knowledge-intensive task. 

The task-template layer offers an implementation for a certain task type. At the mo-
ment, only a library has been built for the assessment template, but it would be only a 
matter of putting in more work to add other templates. Figure 12.12 shows a number of 
classes defined in the assessment library. This layer defines concrete tasks, such as the 
top-level task ASSESSMENT, as subclasses of the general task class. The same is true 
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Figure 12.13 
Classes for the application library of the housing system. 

for knowledge roles and inferences. Again, interface definitions are used to provide appli-
cation developers with a hook to provide different behavior of the assessment library (for 
inferences as well as tasks). 

12.2.5 Application Layer 

The application layer is the focus point for an application developer. For each application 
the developer should define a separate library, and indicate how classes and interfaces from 
the lower layers are used in the implementation. Each application typically includes the 
framework library as well as the CommonKADS library. In addition, a task-template mod-
ule needs to be included. An application may actually include several task templates. In 
that case, the application has to indicate how these templates are used together to reach the 
overall goal. In other words, the application should have strategic knowledge (cf. Chap-
ter 13) about how to combine tasks to reach a certain goal. The application developer will 
have to code the following parts: 
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• Domain-knowledge representation The concepts and relations in the knowledge 
model will need to be represented as, respectively, classes and associations in Aion. 
Instances of concepts and relations can be represented with static instances in Aion. 
For rule types no Aion construct is available. The rule instances can be represented 
through the Aion rule formalism. 

• Template extensions The template needs to be mapped to the application. An exam-
ple is to connect knowledge roles to domain concepts. The framework distinguishes 
two types of template extensions: 

1. Obligatory extensions: these are minimally required to get a running application. 
2. Optional extensions: these can be used to refine the application, or to override 

default implementations. 

The extensions mainly concern mappings of domain classes to roles in the template. In 
addition, the implementation of the inference methods may need to be coded. For the 
latter, the framework provides a number of standard method implementations (typically 
rule-based), as well as default implementation of concrete inferences (abstract, select, 
etc.). 

A number of sample classes coded for the housing application are shown in Fig-
ure 12.13. The extensions that need to be coded are similar to those required for the Prolog 
system. As in the latter system, ideally a large part of this coding should be supported by a 
CASE tool that performs (semiautomatically) the mapping from a knowledge-model spec-
ification to Aion code. Also, one could think of a wizard guiding a application developer 
through the process of attaching a task template to an application. 

12.2.6 Running the Aion Application 

The CommonKADS tracer, specified in the CK-viewer library (connected to the Com-
monKADS layer) can be used to generate a trace of the reasoning process. This trace 
is similar to the tracer developed for the Prolog system; only the window organization is 
slightly different. Such a tracer turns the running system into a white box, providing the 
developer with a debugging tool. The tracer is also useful if one wants to demonstrate the 
reasoning part to a domain expert. 

The Aion tracer puts its information on three sheets: one for status information about 
tasks, one for status information about inferences, and one for changes in dynamic roles 
(the "blackboard"). Figures 12.14 and 12.15 show the housing application in action. The 
state of the reasoning process in Figure 12.14 corresponds to the state shown in Figure 12.6, 
i.e., at the point when the abstraction task is finished. Similarly, Figure 12.15 corresponds 
to the system state in Figure 12.7 (one norm has been evaluated). 
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Figure 12.14 
Trace of the running housing application in Aion. The abstraction task has just finished. The generic Corn-
monKADS tracer puts its information on three sheets: one for status information about tasks, one for status 
information about inferences, and one for changes in dynamic roles (the "blackboard"), The figure shows the 
trace information on the task and the dynamic roles sheets. 

12.3 Bibliographical Notes and Further Reading 

There is not much literature about a structured design and implementation process for 
knowledge systems. Many approaches still go directly from high-level model to code. The 
MIKE approach (Angele et al. 1998) is one of the few exceptions. Fensel and van Harme-
len (1994) give a overview of languages for implementing CommonKADS-like knowledge 
models. 

The implementation described in Section 12.2 was provided courtesy of Leo 
Hermans and Rob Proper of Everest, 's Hertogenbosch, the Netherlands (e-mail: 
1.hermans@everest.n1).  
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Figure 12.15 
This trace of the running housing application shows the situation where a norm has been selected and is now 
being evaluated. In this figure the inference and the dynamic roles sheets are shown. 
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13 
Advanced Knowledge Modelling 

Key points of this chapter: 

• Knowledge modelling of complex applications often requires more sophis-
ticated tools and techniques than those presented in Chapter 5. We offer 
here a number of advanced modelling techniques. 

• Advanced domain-modelling constructs comprise multiple subtype hierar-
chies, aggregates, formulas, and schema modularization. 

• Inference standardization is not feasible, but we can provide you with a 
catalog of structured descriptions of inferences. 

• Several ways exist to introduce more flexibility in the task knowledge, such 
as multiple methods for the same task and supporting strategic reasoning 
about task combinations. 

13.1 Introduction 

In Chapter 5 we introduced a basic set of knowledge-modelling techniques. However, in 
complex applications the knowledge engineer will be in need of a larger set of modelling 
tools. Here, we provide some of those techniques. 

We dive deeper into the modelling of domain, inference, and task knowledge. In the 
first section we discuss some advanced domain-modelling constructs that you might find 
useful. Most of these constructs are not unique to knowledge modelling: they are also used 
in advanced data modelling. Examples of advanced constructs are: 

1. specification of the precise meaning of subtype relations; 
2. the possibility of defining for a single concept multiple subtype hierarchies along sev-

eral dimensions, which are termed "viewpoints"; 
3. a built-in part-of construct that can be used to model "natural" part-whole relations; 
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4. inclusion of a mathematical-modelling language to specify logical and mathematical 
constraints and formulas; 

5. schema modularization through an "import" mechanism, thus enabling grouping of 
similar constructs in a single schema. 

For the inference knowledge we present a small catalog of inference descriptions. This 
is not meant as a formal theory, but provides a guideline which novice CommonKADS 
users can consult. In the section on task knowledge we discuss techniques for introducing 
more flexibility in task activation. We also discuss other reusable components, such as 
problem-solving methods. 

13.2 Domain Knowledge 

13.2.1 Semantics of the Subtype Relation 

Subtype relations are often-used constructs in modelling a domain. The generalizations 
captured in a subtype hierarchy are attractive to analysts who are always looking for ways 
of grasping the main concepts of a domain in a parsimonious way. 

Two features of subtype relations deserve special attention, because they provide us 
with useful additional information about the meaning (or "semantics") of a subtype rela-
tion. These two features are: 

1. Disjointedness. A subtype relation is "disjoint" if each instance of the supertype be-
longs to at most one subtype. If multiple participation in subtypes by a single instance 
is possible, we call this subtype relation "overlapping." 

2. Completeness. A subtype relation is "complete" if each instance of a supertype partic-
ipates in at least one subtype. If participation in the subtype is optional, the subtype 
relation is called "partial." 

The default way of introducing a subtype is to include a SUBTYPE-OF statement in the 
subtype. However, when one wants to define these two semantic properties for the subtype 
relation, one needs to add also a SUPERTYPE-OF definition in the supertype. A typical 
example is shown in Figure 13.1. The figure shows the definition of the type employee. 
The intended meaning of the definition is that instances of employee can optionally also 
be instances of one or more of the subtypes. Thus an employee can be both a system 
analyst and a project manager, but also neither of those. The specification of completeness 
and disjointedness is restricted to the textual definition. The graphical format is freed on 
purpose from this type of detail, in order to preserve an easy and intuitive understanding 
of the diagrams. 
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CONCEPT employee; 
SUPER-TYPE-OF: 

system-analyst, 
system-designer, 

project-manager; 
SEMANTICS: 

DISJOINT: NO; 
COMPLETE: NO; 

END CONCEPT employee; 

Figure 13.1 
Disjointedness and completeness are specified at the level of the supertype. This requires an explicit supertype-
of declaration in the textual specification, followed by the definition of the semantics properties (see above). 
No graphical format is provided. The example shows the supertype "employee." The intended meaning of the 
definition is that instances of this concept can optionally also be instances of one or more of the subtypes. 

13.2.2 Multiple Subtype Hierarchies 

Constructing subtype hierarchies is usually seen as an important activity in data modelling 
in general, and thus also in domain-knowledge modelling. Subtypes provide the analyst 
with a powerful abstraction mechanism, and have the well-known advantages of parsi-
mony (through attribute inheritance) and reuse (through domain generalization). In some 
domains such as classification of a flora species, the knowledge engineer will find large pre-
defined hierarchies. However, in most domains, these hierarchies need to be constructed 
by the knowledge engineer. 

There are usually several possible ways to organize a subtype hierarchy. Figure 13.2 
shows a typical example of a problem frequently encountered in hierarchy organization. 
The figure shows a small fragment of a hierarchy of infections organized in two different 
ways. In the left tree, pneumonia has viral pneumonia and bacterial pneumonia 

as its immediate subtypes. One level lower, the distinction between acute and chronic is 
made. In the tree fragment at the right, these two levels are inverted. The problem is often 
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Figure 13.2 
A fragment of two alternative subtype hierarchies. 

that neither tree is satisfactory. For example, in the tree on the left we cannot talk about 
acute pneumonia; the same is true for viral pneumonia in the tree on the right. 

The problem lies in the fact that levels in a subtype tree are often not really subordinate 
to each other. For example, the distinction between "acute" and "chronic" infections has 
an equal standing when compared to "viral" and "bacterial" infections. Both can be seen 
as dimensions along which subtypes are defined. In fact, each level in Figure 13.2 can be 
viewed as such a dimension: 

• The first distinction between the diseases is made on the basis of localization of the 
infection: the meninges of the brain (meningitis) or the lung (pneumonia). 

• The second and third dimensions are the time factor (acute vs. chronic) and the causal 
agent (viral vs. bacterial, also called "etiology" in medicine). 

If there is not a clear ordering of the dimensions in a particular domain, it is usually 
better to define these dimensions at the same level of abstraction. CommonKADS pro-
vides the notion of viewpoint for this purpose. The term "viewpoint" is used here because 
a dimension is a way to "view" a certain object. A VIEWPOINT definition is similar to 
a SUPERTYPE-OF definition. The main difference is that the dimension along which the 
subtypes are defined is explicitly stated. Figure 13.3 shows an alternative definition of 
infection and its subtypes. The convention is that we use supertype -of to define the 
main or dominating subtype dimension. In the case of infection we decided to make 
localization the main dimension. Alternatively, we could have defined this dimension also 
as a third viewpoint, thus giving all dimensions the same status. The graphical representa-
tion of this definition is shown in Figure 13.4. Using these three dimensions we can now 

„ . • 
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CONCEPT infection; 
SUPER-TYPE-OF: 

meningitis, pneumonia; 
VIEWPOINTS: 

time-factor: 
acute-infection, chronic-infection; 

causal-agent: 
viral-infection, bacterial-infection; 

END CONCEPT infection; 

< definitions of meningitis, viral-infection, etc. > 

CONCEPT acute-viral-meningitis; 
SUB-TYPE-OF: 

meningitis, acute-infection, viral-infection; 
END CONCEPT acute-viral-meningitis; 

Figure 13.3 
Defining viewpoints in CommonKADS. Each viewpoint is defined through a dimension such as "causal agent" 
(or "etiology") along which subtypes are organized. These subtypes can subsequently be used to define concepts 
through multiple inheritance (see "acute-viral-meningitis"). 

define an infection subtype such as acute-viral-meningitis as a subtype of three 
concepts. Note that in Figure 13.4 we have introduced a number of new concepts that 
we were not able to represent in the first hierarchy in Figure 13.2: acute - infection, 
chronic - infection, viral - infection, and bacterial - infection. 

Subtype dimensions occur in almost any domain. For example, in the house assign-
ment domain described in Chapter 10 one encounters two subtype trees of houses (see 
Figure 13.5). A residence can be both characterized in terms of its building type (house 
or apartment) or through the type of "ownership" (rented residence, etc.). 

13.2.3 Aggregates 

In many applications we encounter part-whole relations. For example, a personal computer 
consists of a processor, internal memory, a hard disk, and so on. Of course, we can model 
these relations by introducing a relation with a name such as "consist-of." But this still 
leaves the intended meaning of the relation open. Because part-whole relations are often 
important notions in capturing the structure of a domain, we introduce a special language 
construct for it. 

Figure 13.6 shows an example of a part-whole specification. In a concept definition we 
can introduce a HAS-PART slot to indicate that the concept is actually an aggregate entity 
consisting of subparts. Such parts need not be "real" physical parts, but also can be of 
a more conceptual nature. The main rationale for using HAS-PART is that a term such as 
"part-of" or "consist-of" is intuitively appealing from an application-domain point of view. 
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Figure 13.4 
Graphical representation of the viewpoints defined on "infection" and their use in multiple inheritance. 

Figure 13.5 
Two sets of subtypes of "residence." The left part of the tree is defined along the "owner status" dimension. 
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CONCEPT patient-visit-record; 
PROPERTIES: 

date-of-visit: DATE; 
attending-physician: NAME; 

HAS-PARTS: 
patient-data; 
anamnesis; 
physical-examination; 
test; 

CARDINALITY: 0+; 
ROLE: test-done; 

END CONCEPT patient-visit-record; 

Figure 13.6 
Specification of a part-whole relation through the "has-parts" construct. The default cardinality is precisely one, 
meaning that each instance of the aggregate has exactly one instance of the part. Thus, a patient-visit-record 
consists of precisely one instance of patient-data, anamnesis and physical-examination, and of any number of 
tests. Each part can be given a role name. 

Figure 13.7 
An example of a part-whole relation in a medical domain. The part-whole relation is visualized by adding a 
diamond symbol to the "whole" side of the relation. On the "part" side the cardinality of the part-whole relation 
can be indicated in the usual manner. 
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The default cardinality is precisely one, meaning that each instance of the aggregate 
has exactly one instance of the part. Each part can be given a role name, similar to the 
general relation construct. The default role names are "part" and "whole." 

Figure 13.7 shows a graphical representation of the specification in Figure 13.6. The 
part-whole relation is visualized by adding a diamond symbol to the "whole" side of the 
relation. On the "part" side the cardinality of the part-whole relation can be indicated in the 
usual manner. In the example, a patient-visit-record consists of patient-data, anamnesis, 
physical-examination and any number of tests. As one can see, physical-examination 
itself is an aggregate concept consisting of three subparts. 

It most applications it is intuitively clear what the part-whole relations should be. If in 
doubt, refrain from using it and use the more neutral relation construct instead. 

13.2.4 Expressions and Formulas 

In many domains there is a need to express some mathematical domain theory. The stan-
dard data-modelling primitives do not support the specification of such theories very well. 
Therefore, we imported into the CommonKADS knowledge-modelling language a format 
for writing down equations, expressions, and complete mathematical models. The format 
we use is the neutral model format (NMF). 

NMF is a language for expressing mathematical models. The main objectives of NMF 
are (1) to make a distinction between a model and the simulation environment in which 
the model can be executed, and (2) that models should be easy to understand and express 
for nonexperts. Standardization of NMF is in progress. NMF is currently used by the 
American Society of Heating, Refrigerating, and Air-Conditioning Engineers. 

In NMF one can express mathematical formulas and mathematical models (with pa-
rameterization). One of the ideas is that the models are stored in reusable libraries and can 
thus be shared. 

Most of the equation syntax of NMF will be familiar to programmers. Consult the 
appendix for details on how to use the NMF syntax and how it is embedded into the Com
monKADS knowledge-modelling language. 

13.2.5 Rule Types and Rule Instances 

Rule types The notion of rule type is an important modelling technique in Com-
monKADS knowledge models. It is there that most of the the real differences with tra-
ditional data models reside. It is worth taking the following guidelines into account when 
using rule types: 

Guideline 13-1:  SPEND TIME TO FIND APPROPRIATE NAMES FOR THE RULE TYPE 
ITSELF AND FOR THE CONNECTION SYMBOL 

wasi....01011111. 
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Rationale: Choosing the right names can greatly enhance the understandability of the 
domain-knowledge specification. It is hard to underestimate this name-giving enterprise. 
The rule-type name (the label of the ellipse in the graphical notation) should be a name 
applicable to the rule as a whole. The connection symbol should enable readability of the 
rule: it should make a logical connection between the antecedent and the consequent. 

Guideline 13 -2:  WHEN A SHORT NAME CANNOT BE FOUND, DO NOT BE AFRAID OF 
LONG NAMES 
Rationale: Our human vocabulary is targeted at things that we see or talk about every day. 
For that reason it is usually simple to find appropriate names for simple information entities 
(age, person, employee, company), but much more difficult for complicated concepts used 
in reasoning processes. We just do not have words for them! That means that a proper 
name will always be some sort of circumscription of the thing we want to model, e.g., 
"potential causal dependency." 

Guideline 13-3:  RULE TYPES MODEL REAL-WORLD "RULES" OR DEPENDENCIES, 
NOT AN IMPLEMENTATION CONSTRUCT 
Rationale: Rule types specify some knowledge-rich dependency between concepts and/or 
relations. This is what we often call a rule in conversation. This notion of rule is quite dif-
ferent, and actually much broader, than the notion of rule as an implementation construct. 
Be careful not to confuse these two. 

One variation of a rule-type definition was not mentioned in Chapter 5. Sometimes, 
we have knowledge about a certain type of concept without a clear antecedent or conse-
quent. An example is knowledge about restrictions of attribute values of a component in 
a configuration-design task. This type of knowledge is usually called "constraints." The 
rule-type definition allows you to specify constraints. The textual and graphical notations 
are simple and straightforward. An example of a constraint definition is shown in Fig-
ure 13.8. This rule type models a set of logical formulas concerning a component. The 
notation is simpler, because a connection symbol is not required. 

Rule instances In this book we use an semiformal notation for writing down instances 
of rule types. As an example, let's take the "requirement" rule from Chapter 10: 

residence-application.applicant household-type = single-person 
residence-application.applicant age-category = up-to-22 
residence-application.applicant income < 28000 
residence-application.residence rent < 545 

INDICATES 
rent-fits-income.truth-value = true; 

If one takes a close look at this rule from a formal point of view, it turns out that it 
contains at least two tacit assumptions: 
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component 

component 
constraint 

RULE-TYPE component-constraint; 
CONSTRAINT: 

component; 
END RULE-TYPE component-constraint; 

Example constraints (car is a component): 

car.weight < 500 kg 
car.length < 5.5 m 

Figure 13.8 
Graphical and textual notation for constraints: rule types which model expressions about one type of concept. 

1. The statements about residence-application in the antecedent should be interpreted 
as universally quantified statements about residence applications in general. Thus, we 
really want to say in this rule: 

FORALL x:residence-application 
x.applicant.household-type = single-person 
x.applicant.age-category = up-to-22 
x.applicant.income < 28000 
x,residence.rent < 545 

INDICATES 
rent-fits-income.truth-value = true; 

The symbol x is here a logical variable of the type residence-application. 
2. The statement about the rent - fit - income criterion says something about a value of 

concept (i.e., class). The universal quantification is not applicable here. 

In fact, we are here at crossroads. From a formal point of view, the sloppy notation is 
ambiguous and even inconsistent. However, from a pragmatic point of view it turns out that 
statements such as the first rule above hardly ever lead to ambiguities. In fact, most people 
have more problems understanding the correct formal representation than the (technically 
speaking) incorrect intuitive rule representation! 

Our advice is simple: keep to the representation with which you are most familiar, but 
be wary of complicated formal representations as the only representation of knowledge in 
a knowledge model. The reason for this is that a knowledge model is a communication 
vehicle: it should serve as documentation of your modelling work, and inform newcomers 
of what has been done. 

Please note that this statement is not a condemnation of formal techniques. On 
the contrary, formal techniques have a clear role, particularly in model verification 
(van Harmelen 1998). But usually it is a good idea to complement a formal knowledge 
representation with a less formal, more intuitive format. 



Advanced Knowledge Modelling 327 

The intuitive format used in the rule above works well, as long there is no need to 
talk explicitly about different instances of the same type. If the latter is the case, the 
implicit universal quantification becomes ambiguous. You will have to introduce variables 
to be able to reference certain instances in your rule. The following rule shows the use of 
variables in defining the concept of "smoker / nonsmoker" conflict in a room allocation 
problem: 

/* ambiguous rule */ 
employee.smoker = true AND 
employee.smoker = false 

IMPLIES-CONFLICT 
smoker-and-non-smoker. truth-value =true; 

/* use of variables to remove the ambiguity */ 

VAR x, y: employee; 

x.smoker = true AND 
y.smoker = false 

IMPLIES-CONFLICT 
smoker-and-non-smoker.truth-value =true; 

The first rule really does not convey the meaning we want to attach to the rule. Here 
we really need to introduce variables to understand the intended meaning of the rule. 

The CommonKADS conceptual modelling language supports a syntax for specifying 
rule instances within knowledge bases. The rules above and also the rules in the sample 
knowledge model in the appendix comply with this syntax. The syntax has the NMF format 
(see above) for equations as its basis, with a number of rule-specific extensions. You will 
have to consult the BNF syntax definition in the appendix for details. 

Rule types and knowledge bases In most cases knowledge bases will contain instances 
of rule types. You can follow the guideline that there should be a separate knowledge base 
for each rule type. In general, however, there can be many-to-many relationships between 
rules and knowledge bases. Rules of similar types or role can be placed together, partic-
ularly if rule sets are small. One should take care that rule types in the same knowledge 
base have different connection symbols. Otherwise, the rule types cannot be distinguished. 
Also, rules of the same type may be spread over several knowledge bases if they play dif-
ferent roles in the reasoning process. This means that the structure of knowledge bases is 
much more bound to the structure of the reasoning process than the rule types. 

13.2.6 Schema Modularization through the Import Mechanism 

If a domain schema gets too large, it is good engineering practice to split it up into parts or 
modules. A guideline one can use here is the size of the schema: 
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Guideline 13-4:  IF THE SCHEMA DIAGRAM DOES NOT FIT ON A SINGLE PAGE, THEN 
CONSIDER SPLITTING THE SCHEMA INTO MODULES 
Rationale: This is an extremely pragmatic guideline. People like figures, and we should 
be able to tell the full story of a schema in one figure. If this cannot be done, it makes 
sense to break down the element (in this case, the domain schema) into parts. Be careful 
not to cheat, e.g., by decreasing font sizes. This only has the undesirable effect of making 
the figure unreadable, and makes matters worse. 

Schema modularization can be achieved with the USES construct. For each domain-
schema we can define which other schemas are being used. There are two options: 

1. A full domain schema is imported into the current schema. This has the effect of 
making all definitions of the used schema also part of the using schema. 
The syntax is: 

DOMAIN-SCHEMA system-connections; 
USES: system-components; /* The imported schema */ 

2. A selected set of definitions of a certain schema is included in the current domain 
schema. This makes only those definitions part of the using schema. 
The syntax is: 

DOMAIN-SCHEMA liver-disease; 
USES: 

disease FROM general-medical-concepts; 
finding FROM general-medical-concepts; 
organ FROM general-medical-concept; 

The USES construct is a first step in schema organization. In the next section we see 
more ways of working with multiple schemas. 

13.2.7 Domain-Schema Generalization 

One can describe a domain schema at several levels of abstraction. For example, if we 
model a computer system we can describe it in terms of specific elements such as "CPU," 
"memory," and "screen." We can also generalize from this description, and introduce an 
abstract notion such as "component." In knowledge analysis one is often interested in 
making schema generalizations, because these make the schema more general and thus 
more widely applicable. 

There are different ways in which one can generalize a domain schema, based on 
different types of generalizations. We can distinguish four types of domain schemas: 

VI 
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1. Domain-specific schema . Domain-specific schemas are domain schemas that are 
specific for a particular type of system or artifact. Examples of domain-specific 
schemas could be domain schemas for ships, cars, rental housing, or electrical net-
works. A domain-specific schema generalizes over particular application tasks in that 
domain. Thus, a domain-specific schema for ship design could be used by both a 
design-assessment application as well as by a design-construction application. In the 
housing domain we could say that the part of the schema concerning applicants and 
residences is domain-specific, as it may well be used in other applications in the same 
organization. 

2. Generic domain schema . A generic domain schema describes a "top-level category." 
One can see a generic domain schema as a basic mechanism for "carving up the world." 
It is related to the Aristotelian notion of categories. The main difference is that as a 
knowledge engineer we are not aiming at a complete set of generic domain schemas, 
but are only interested in those categories that frequently occur and repeatedly prove 
to be of use in practical applications. Examples of useful top-level categories that have 
been identified are notions such as physical, functional, and behavioral entities, con-
nectedness, part-whole, and topology. Although in principle generic domain schemas 
are extremely useful, their use in current practice is limited. The "distance" between 
the generic concepts and applications terms just seems to be too large. However, this 
view might well change in the near future, as there are numerous research projects 
active in this area. 
In the short term, the most promising generic domain schemas are probably those 
which generalize over particular artifacts, and describe general features of artifacts. 
Such generic domain schemas usually define a viewpoint related to some physical pro-
cess type: flow, heat, energy, power, electricity. Such processes reappear in many dif-
ferent technical domains For example, flow processes occur in many technical systems 
as well as biological systems. 

3. Method-specific domain schema . The method-specific domain schema contains the 
conceptualizations required by a certain method for realizing a task. It is the most spe-
cific domain schema from the use perspective. This perspective is important, because 
the way we look at knowledge is often dependent on its use. The domain schemas 
in Chapter 6 are examples of such method-specific domain schemas. As you may 
have noticed, these schemas do not contain any domain-specific terms. For exam-
ple, the assessment schema is in many respects similar to the schema for the housing 
application (see Chapter 10), but all domain-specific concepts have been replaced by 
domain-neutral terms. This makes it easier to reuse the domain-knowledge schema in 
combination with the task template in a new assessment domain. 

4. Task-specific domain schema . In Chapter 6 we have given only one method per 
task type, sometimes with slight variations. If one would compare different method- 
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Figure 13.9 
The domain schema of the propose-and-revise method revisited. The nongray part can be seen as the "represen-
tation core" needed by every configuration-design task, and thus constitutes the task-specific domain schema for 
configuration design. The gray area denotes the method-specific extensions required for the propose-and-revise 
method. 

specific domain schemas for the same task type, we would note that there is a general 
core of knowledge types. This "intersection" of all method-specific domain schemas 
is called the task-specific domain schema. This domain schema contains the minimal 
conceptualizations required to carry out a certain type of task. For example, a study in 
configuration design (Schreiber and Birmingham 1996) showed that part of the domain 
schema in Figure 13.9 (see Chapter 6) is actually such a task-specific domain schema 
for configuration. This domain schema is shown in Figure 13.9. The figure is derived 
from the domain schema for the propose-and-revise task method described in Chapter 6 
(see Figure 6.18). The nongray area represents the task-specific domain schema for 
configuration design. Thus, components, parameters, constraints and c. alculations are 
needed for every configuration-design problem. The knowledge types within the grey 
area are the method-specific extensions required by the propose-and-revise method: 
fixes and corresponding actions to modify the design (see the method description in 
Chapter 6). 

Now, you might be wondering, what kind of domain schemas are the car-diagnosis 
schema and the house-assessment schema in earlier chapters? These contain both domain- 
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specific terms (e.g., house, applicant), but also task-specific terms (e.g., decision, re-
quirement). Domain schemas for particular applications are in fact amalgamates of dif-
ferent types of domain schemas. Such an amalgamation is not a bad thing in itself. The 
application actually requires this tight coupling of domain schemas in order to be able to 
make a system work. For this amalgamation of domain- and use-specific knowledge types, 
we use the term application domain schema. 

Using multiple schemas for knowledge sharing and reuse One program of work in 
current knowledge-engineering research is to study the nature of types of schema gener-
alizations. Generalized domain schemas are called "ontologies," a term borrowed from 
philosophy. Ontologies are supposed to contain an explicit description of the semantics 
("meaning") of the types introduced. The aim of ontology research is, roughly speaking, 
twofold: 

1. To reuse ontologies in other application domains or tasks. If applicable, the availability 
of such reusable ontologies can speed up the knowledge-engineering process consider-
ably. The method-specific ontologies in Chapter 6 can be seen as a small step in this 
direction. 

2. Knowledge bases cost a lot to develop, but in practice are difficult to reuse. One pur-
pose of ontologies could be to use these as semantic descriptions of knowledge bases, 
thus enabling a better understanding of the meaning of knowledge pieces in a knowl-
edge base. In a special issue of the International Journal of Human-Computer Studies 
(Schreiber and Birmingham 1996) one can find efforts to enable reuse of a large knowl-
edge base with the help of a configuration-design ontology. 

Ontologies should be seen as a "natural next step"on the road to more expressive infor-
mation modelling. In this new era, where there is a tremendous need for more intelligent, 
knowledge-intensive search, storage, and communication facilities, this type of develop-
ment is crucial. In particular, knowledge management will increasingly be dealing with 
constructing, sharing and reusing organization-wide ontologies. 

13.3 Inference Knowledge 

13.3.1 Inference Standardization 

Inferences are important components of knowledge models. Inferences act as the building 
blocks of the reasoning process. From the start, people have been interested in getting a 
standard set of these building blocks. There is a parallel here with design tasks. As we 
pointed out in Chapter 6, a design task can only be automized if the design is made up 
from predefined building blocks of a sufficiently large grain size. The same holds more or 
less for knowledge engineering itself. If we would have a standard set of inferences, the 
knowledge-modelling problem would be a much easier task. 
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Unfortunately, no such standard set exists to date. Several proposals have been put 
forward. A good overview and discussion of the issues involved can be found in the work 
of Aben (1995). Still, when we choose names for inferences we do so carefully, trying to be 
as precise as possible. In this book we have tried to keep the same intuitive interpretation 
whenever an inference was used at more than one place. However, there is no formal theory 
behind it. 

For the moment, the best we can do is offer you a small catalog of the inferences used 
in this book. This catalog is a structured textual description. For each inference we briefly 
indicate the following characteristics: 

• Operation: A description of the sort of input and output the inference operates on. 
• Example: An example of the inference in some application. 
• Static knowledge: A characterization of the domain knowledge typically used to make 

the inference. 
• Typical task types: The types of tasks the inference typically occurs in. 
• Used in template: The task templates in Chapter 6 in which this inference occurs. 
• Control behavior: How is the computational behavior of the inference? This behavior 

can be described through the following two characteristics: 

1. Does the inference always produce a solution? If the inference can fail, we can use 
the control primitive HAS-SOLUTION (see Chapter 5) when invoking the inference 
in the control structure of a task method. 

2. Can the inference produce multiple solutions, given the same input? If the an-
swer is yes, the inference can be used in a loop, using the control primitive NEW- 
SOLUTION. 

• Computational methods: What computational methods are likely to be used when 
realizing this inference during design and implementation? 

• Remarks: Remarks about the inference, which could not be made under any of the 
previous headings. 

We make no claim that the catalog is complete. Some people may also want to attach 
a different meaning to an inference. The catalog is meant as a rough guideline for a novice 
CommonKADS user. 

13.3.2 Inference Catalog 

Abstract 
Operation: Input is some data set, output is either a new given ab- 

stracted from the data set, or the input set plus an ab-
stracted given (i.e., the updated input set). The choice be-
tween these two options is a mainly stylistic. 

Example: Data abstraction in medical diagnosis: any body tempera- 

:  itt 
----morilmelsmoutrw—v A 



Advanced Knowledge Modelling 333 

ture higher than 38.0°C is abstracted to "fever." 
Static knowledge: Abstraction rules, subtype hierarchy. 

Typical task types: Abstraction occurs mainly in analytic tasks. In this book 
the inference is found in the assessment task template and 
is mentioned as a typical extension in diagnosis. 

Used in templates: Assessment. 
Control behavior: This inference typically may succeed more than once. 

Make sure to add any abstraction found to the data set to 
allow for chained abstraction. 

Computational methods: Forward reasoning with abstraction rules, generalization 
in a subtype hierarchy. 

Remarks: Although theoretically abstraction is reduction of informa- 
tion, in knowledge-engineering practice it is in effect an 
addition of information, because the system keeps the old 
data and uses the abstraction as additional information. 

Assign 
Operation: This inference is concerned with a resource that is as- 

signed to an actor, a unit, or similar "active" objects. 
Example: Assign a room to an employee. 

Static knowledge: This inference uses a mix of constraints and preferences. 
Typical task types: The inference is rather specific for synthetic tasks; it is 

hard to think of an example of assignment in an analytic 
task. 

Used in templates: Assignment, scheduling. 
Control behavior: This inference may fail. It also can produce more than one 

solution from the same input (e.g., room assignments with 
the same preferences). 

Computational methods: In simple cases a rule-based approach can be chosen. 
More complex problems may require the use of constraint-
satisfaction algorithms 

Remarks: In some cases the "assign" inference comprises simply the 
computation of a formula. In such a case we advise you to 
use the inference compute instead. The inference assign is 
different from the task ASSIGNMENT. The latter is a task 
that comprises a number of different inferences, including 
the actual assignment (cf. the assignment task in the hous-
ing case study (see Chapter 10), in which the assignment 
turned out to be algorithmic). 
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Typical task types: 

Associate an object description with a class it belongs to. 
Classify a discrepancy as being "minor" or "major." 
Class definitions, consisting of necessary and sufficient 
features. For example, a Grey Reinet apple should have 
a rusty surface (a necessary condition). 
Although this inference is most common in analytic tasks, 
it can also be used in synthetic tasks, e.g., classifying a 
design to be of a certain type. 
Monitoring. 
This inference typically produces precisely one solution 
(cf. its use in the monitoring template). 
Mostly simple pattern matching. 
When a classify inference comes up in an application, 
one should always ask oneself: is this a full knowledge-
intensive task in its own right or is it just a simple infer-
ence? One can take this decision by looking at the do-
main knowledge. If the classification is a simple deduc-
tion from class definitions, then one can view it safely as 
an inference. This requires typically the presence of suffi-
cient conditions for the classes. If this is not the case, the 
inference process is more complex, and one should con-
sider modelling this as a separate task (and thus introduce 
a complete classification task template). Also, if the out-
put can be a set of possible classes, it is likely this function 
needs to be specified as a task in its own right. 

Input is two objects. The inference returns equal if the 
two objects are the same. If this is not the case, the infer-
ence returns either not - equal (in case of two symbols) 
or some numerical value, indicating the difference. 
Comparison of two findings: the one predicted by the sys-
tem and the one actually observed. 
In simple cases, no domain knowledge is required, be-
cause the comparison is purely syntactic. In other cases, 
domain knowledge may need to come into play to make 
the comparison. For example, if the objects are charac-
terized by numerical values, the domain knowledge could 

Classify 
Operation: 

Example: 
Static knowledge: 

Used in templates: 

Control behavior: 

Computational methods: 

Remarks: 

Compare 
Operation: 

Example: 

Static knowledge: 
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Remarks: 

Example: 
Static knowledge: 

Typical task types: 
Used in templates: 
Control behavior: 

provide knowledge about intervals within which two val-
ues are assumed to be equal. 
Mainly analytic tasks. 
Diagnosis (Chapter 5), monitoring. 
Produces precisely one solution. 
Often requires only simple techniques. 

Given some effect, derive a system state that could have 
caused it. 
Cover complaints about a car to derive potential faults. 
This inference uses some sort of behavioral model of the 
system being diagnosed. A causal network is the most 
common candidate. 
This inference is specific for diagnosis. 
Diagnosis. 
This inference produces multiple solutions for the same 
input. 
Abductive methods are used here. These can range from 
simple to complex, depending on the nature of the diag-
nostic method employed. 
This is an example of a task-specific inference. Its use is 
much more restricted than, for example, the select infer-
ence. 

Given a proposed solution, generate one or more problems 
with it. The purpose is usually to find ways of improving 
the solution. 
Critique the design of an elevator. 
The knowledge used by this inference is usually domain-
specific; there is hardly any general critiquing knowledge 
for design. Its character tends to be heuristic and context-
dependent. 
This inference is found in synthetic tasks. 
Configuration design. 
In the configuration-design template, it succeeds precisely 
once. However, one can think of situations where multiple 
outputs can be generated for the same design. 

Typical task types: 
Used in templates: 
Control behavior: 

Computational methods: 

Cover 
Operation: 

Example: 
Static knowledge: 

Typical task types: 
Used in templates: 
Control behavior: 

Computational methods: 

Critique 
Operation: 



336 Chapter 13 

Computational methods: The computational methods tend to be domain-specific. 
Remarks: The critique inference is an important step in the propose- 

critique-modify methods for design described by Chan-
drasekaran (1990). 

Evaluate 
Operation: Input is a set of data and a norm. Output is a truth value 

indicating whether or not the data set complies with the 
norm. If the evaluation always concerns the same norm, 
the norm can be omitted as a dynamic input role (cf. the 
scheduling template). 

Example: Evaluation of criteria in the housing case. 
Static knowledge: A norm is usually some symbol such as "enough money." 

The domain knowledge should indicate how the truth 
value can be derived from the data set. Requirements for 
norms can often be represented in a decision-table format. 

Typical task types: This inference is widely applicable. 
Used in templates: Assessment, scheduling. 
Control behavior: The inference produces precisely one solution for a partic- 

ular data set. 
Computational methods: Backward reasoning, using the norm a.: the goal. 

Generate 
Operation: Given some input about the system (system features, re- 

quirements), provide a possible solution. 
Example: Generate a possible rock class to which a rock sample may 

belong. 
Static knowledge: When used for analytic tasks: knowledge about all the 

possible solutions (the solutions are enumerable for an-
alytic tasks). When used for synthetic tasks: system-
composition knowledge, e.g., plan elements and possible 
ways of connecting these (in sequence, in parallel). 

Typical task types: This inference can be used in all kinds of tasks. The out- 
put therefore varies depending on the type of task in which 
it occurs. If used in diagnosis, generate produces a fault 
category that could explain the faulty behavior. If the in-
ference is used in planning, it would produce a possible 
plan. 

Used in templates: Classification, synthesis. 

yi 
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Control behavior: Can produce multiple solutions for the same input. Some- 
times, this inference is defined as producing a set. In that 
case, the inference succeeds precisely one time, namely 
with the set of all possible solutions. This is a stylistic 
matter. 

Computational methods: In analytic tasks: simple look-up. In synthetic tasks: algo- 
rithm for computing all possible combinations. 

Remarks: This is a generic inference that occurs in many domains. 
The inference is typically associated with a "generate & 
test" approach, in which there is some "blind" generation 
of possible solutions to the problem. The inference cover 
can be seen as a specific form of generate. 

Group 
Operation: Input is a set; output is a aggregate object containing two 

or more elements of the input set 
Example: Grouping of employees for joint assignment to an office. 

Static knowledge: Domain-specific knowledge about positive and negative 
preferences for grouping. For example, in the office-
assignment application criteria may act as positive or neg-
ative preferences. A combination of a smoker and a non-
smoker is a typical example of a high-priority conflict. 
Such strong conflicts are usually considered to be enough 
to rule out certain solutions. The preferences are often or-
dered, but the ordering scale varies. 

Typical task types: Mainly synthetic tasks. 
Used in templates: Assignment. 
Control behavior: Can provide multiple solutions. 

Computational methods: Constraint satisfaction; generate full combination space 
and then use negative and positive preferences for repeated 
subset filtering (Schreiber 1994). 

Remarks: In earlier descriptions of inference typologies the name 
"assemble" was used for a similar inference. 

Match 
Operation: Given a set of inputs, see whether these together lead to a 

combined result. 
Example: Match the norms for which values have been established 

to see whether it leads to a decision. 
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Static knowledge: Rules that indicate whether a combination of findings or 
results leads to some joint conclusion. 

Typical task types: Mainly confined to analytic tasks. 
Used in templates: Assessment. 
Control behavior: Inference fails or succeeds a single time. 

Computational methods: Forward reasoning. 
Remarks: This is a difficult one. The name "match" has several dif- 

ferent meanings. We have opted here for a quite specific 
definition, without actually committing to one particular 
task. 

Modify 
Operation: This inference takes a system description as both input and 

output. An optional input is the actual modification action 
that needs to be carried out. 

Example: Modifying the design of an elevator by upgrading the ma- 
chine model. 

Static knowledge: Knowledge about the action: one-time action or repeat- 
able action, e.g., upgrading a component or increasing a 
parameter value. 

Typical task types: Mostly synthetic tasks. 
Used in templates: Configuration design, scheduling. 
Control behavior: Delivers one output. 

Computational methods: Simple update. 
Remarks: It is possible to use this inference in diagnosis, e.g., in case 

of a reconfiguration test. 

Operationalize 
Operation: Given some requirements for a system, transform these re- 

quirements into a format which can be used in a reasoning 
process. 

Example: Transform requirements like "fast computer" to parameter 
values such as "at least Pentium processor of 266 hertz." 

Static knowledge: This is a tricky step in a design process. Knowledge tends 
to be heuristic. The choices made here may need to be 
revisited during the design. 

Typical task types: Synthetic tasks. 
Used in templates: Configuration design, synthesis. 
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Control behavior: It is preferable that this inference proposes several alterna- 
tive operationalizations. 

Computational methods: Forward reasoning. 
Remarks: Most methods for synthetic tasks leave this step out, be- 

cause it is difficult to automize. Yet, it is a crucial (if not 
the most crucial) step in artifact design. 

Propose 
Operation: Generate a new element to be added to the design. 

Example: Propose a hard disk model for a PC configuration. 
Static knowledge: Dependencies between component choices; component 

preferences. 
Typical task types: Synthetic tasks. 
Used in templates: Configuration design. 
Control behavior: May succeed multiple times. 

Computational methods: Forward reasoning, preference algorithm. 
Remarks: This inference is in some ways similar to generate. Here, 

only part of the solution is generated. The inference may 
also use search-order knowledge to guide the order of pro-
posals, although in that case it is worth considering mov-
ing it from an inference to a task, mainly because there is 
some form of interesting control inside the function. 

Predict 
Operation: Given a description of a system, generate a prediction of 

the system state at some point in the future. 
Example: Predict the blood pressure of a patient. 

Static knowledge: Requires a model of the system behavior. This model will 
be either quantitative or qualitative 

Typical task types: At the moment, mainly analytic tasks. The inference is 
often used in model-based diagnosis. 

Used in templates: Diagnosis. 
Control behavior: One time. 

Computational methods: Qualitative reasoning, mathematical algorithm. 
Remarks: Prediction can be a knowledge-intensive task in its own 

right. 
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Select 
Input is a set or a list. Out is one element or a sub-
set/sublist. 
Select a diagnostic hypothesis from the disease differen-
tial. 
Often, the domain knowledge provides selection criteria. 
Found in all tasks. Some synthetic tasks can be formu-
lated almost completely as consisting of subset selection, 
namely when the design space is relatively small. 
All templates. 
Produces multiple solutions. 
Standard selection algorithms. If the selection is from a 
set, the inference should produce the output in a random 
order. 
This is a very general and commonly used inference. The 
inference can range in complexity from a simple, trivial 
selection to the application of complex selection criteria. 
The select inference is often a good candidate for grad-
ual refinement, e.g., start with random selection (no static 
knowledge role) and later on include selection knowledge 
to optimize reasoning behavior. 

Input is a set of elements. Output is a sorted list containing 
the same elements 
Sorting a set of valid designs based on the preferences 
(e.g., cheapest first). 
Comparison function that decides on the relative order of 
two elements. 
This inference is most frequently encountered in synthetic 
tasks, where it is used to apply preferences to a set of pos-
sible designs. It can also be used in analytic tasks, e.g., 
for ordering a set of hypotheses (e.g., by using knowledge 
about the a priori likelihood of the hypothesis). 
Synthesis. 
Use standard sorting methods. 
This inference succeeds precisely one time with one par-
ticular input. 

Operation: 

Example: 

Static knowledge: 

Typical task types: 

Used in templates: 

Control behavior: 

Computational methods: 

Remarks: 

Sort 
Operation: 

Example: 

Static knowledge: 

Typical task types: 

Used in templates: 

Computational methods: 

Control behavior: 

NI - 
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Remarks: 

Specify 
Operation: 

Example: 
Static knowledge: 

Typical task types: 
Used in templates: 

Control behavior: 
Computational methods: 

Remarks: 

Verify 
Operation: 

Example: 
Static knowledge: 

Typical task types: 

Used in templates: 
Control behavior: 

Computational methods: 

The name of this inference has a very computational fla-
vor, but it is in fact an effective way of describing certain 
expert reasoning patterns. Sorting is used by experts to 
structure the search space. The sorting knowledge is often 
some form of search-control knowledge. Sometimes, sort-
ing is modelled as a repeated invocation of a knowledge-
intensive select inference. 

This inference takes as input an object and produces as 
output a new object that in some way is associated with 
the input object. 
Specify an observable for a hypothesis. 
Domain-specific rules that make a direct association. 
These rules can be either heuristic or be based on a do-
main theory. 
This general inference occurs in many different tasks. 
Assessment, diagnosis, monitoring, configuration design, 
scheduling. 
Could fail and/or provide multiple solutions. 
Forward reasoning. 
The inference is the "vaguest" one in this catalog. It is 
difficult to pinpoint its exact meaning. The output should 
be something "new." Still, the inference is used frequently. 

Input is a description of a system which is being tested. 
Output is a truth value, indicating whether the system has 
passed the test. An optional output is the name of a viola-
tion (only if the verification failed). 
Verify the design of a computer. 
For analytic tasks: knowledge indicating consistency of a 
hypothesis with a set of data. For synthetic tasks: internal 
and external constraints ("hard requirements"). 
This inference can occur in any type of task. It is most 
often found in methods that apply a "generate & test" ap-
proach. 
Diagnosis, configuration design. 
The inference succeeds precisely once. 
Forward reasoning. 
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13.4 Task Knowledge 

13.4.1 Organization-Specific Task Templates 

Larger organizations will typically have a variety of knowledge-intensive applications. Of-
ten, there is quite some overlap between the task types of these applications. For example, 
a governmental body for handling several types of social benefit claims will typically have 
a range of assessment applications. Similarly, a company in the process industry may have 
multiple applications in which a production process needs to be designed. 

In such situations it makes sense to start keeping a record of the tasks and methods 
used in each application. In such a way, one can build up an organization-specific set of 
task templates. The advantage of such a catalog is that the terminology can be tailored 
to the domain, and therefore the resulting templates are easier to understand for other 
people in the company or for newcomers. Initiating, developing, and maintaining such 
a catalog of organization-specific task templates are typically activities which should fall 
under the responsibility of the knowledge manager. In addition, there will often be a need 
to harmonize the domain schemas used by these applications. 

13.4.2 The Notion of Problem-Solving Method 

The default methods for task types described in Chapter 6 are similar to what is called a 
problem-solving method (PSM) in the research literature. The main difference between 
a task method in the knowledge model and a PSM is the fact that a PSM description is 
usually not yet directly linked to an application task. A task method is thus best seen as 
an instantiation of a PSM for a task. In current knowledge-engineering research PSMs are 
an important object of study, but in this book we do not discuss their full implications in 
depth (for more information see the bibliographical notes below). 

PSMs offer both advantages and disadvantages when compared with task methods. 
The major advantage is that one can exploit the fact that in many task-specific methods 
the same patterns reoccur. For example, in many methods an "empirical-validation" pat-
tern can be identified: some hypothesis is posed about the state of affairs in the world, 
this hypothesis is subsequently tested through some data-gathering method, and then the 
hypothesis is accepted or rejected based on the comparison between the hypothesis and ac-
tual observations. Most of the analytic task templates in Chapter 6 contain such a pattern. 
A PSM allows one to capture this pattern, without committing to task-specific jargon. A 
PSM has therefore in principle a higher reusability potential. 

As usual, in the advantage also lies the disadvantage. Because a PSM is so general 
and does not commit to a particular task, its description tends to be abstract and difficult to 
understand. Therefore, PSMs may pose a usage problem in daily knowledge-engineering 
practice because people do not understand what a PSM may do. Another disadvantage is 
that the grain size of a PSM is usually smaller than that of a task template. A task template 
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is in fact a package of methods tailored to a task type. This method-configuration process 
needs to be done by the knowledge engineer, if one decides to construct the task-knowledge 
specification from PSMs. 

13.4.3 Multiple Methods for a Task 

In Chapter 5 we assumed that the knowledge engineer chooses one particular method for 
realizing a certain task. The choice of a particular method for a task is fixed in the specifi-
cation. For some applications this approach is too rigid. This is particularly true of systems 
developed in a changing or varying environment. One can think of a diagnostic system for 
which the data about the malfunctioning system are of varying quantity or grain size. In 
one environment the system may get detailed system data, and a model-based diagnosis 
method can be used. In another environment the data are just some global indicators, rul-
ing out any detailed behavioral analysis. In the latter case a classification method might be 
called for. 

One way of modelling this situation is to allow the definition of multiple task methods 
for a single task. In addition, one would need to specify a "decision" function for handling 
the method choice. 

However, we recommend using a less complicated solution which avoids the introduc-
tion of new modelling constructs: 

1. Introduce an intermediate "task-selection task." 
2. In the control structure of the method for this task, specify one or more special infer-

ences or transfer functions, the output of which enables in some way the selection of 
one of the methods. 

Figure 13.10 shows a task-decomposition diagram for handling the problem mentioned 
above with this work-around. The example concerns the introduction of multiple "hypoth-
esis generation" methods. The method GENERATION-STRATEGY has two subtasks and 
one transfer function of the obtain type. The idea is to ask an external agent (who that is 
is defined in the communication model) what the grain size is of the data. Based on this 
information, the system will opt for one of the two generation methods. 

13.4.4 Combining Tasks: Strategic Knowledge 

In Chapter 6 we saw that application tasks often consist of a number of task types. Table 6.3 
lists typical task combinations. But in Chapter 5 we suggested that a knowledge model 
concerns one particular knowledge-intensive task. The question therefore arises: how can 
we combine several task types and define how these together solve the application task? 

We can use a similar work-around as mentioned for the problem of multiple methods: 
defining the application task as a supertask of the tasks corresponding to one task type. 
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Figure 13.10 
Example for the work-around when you want to be able to handle multiple methods for a task. A separate decision 
task is used as an "in-between." The example concerns the introduction of multiple "hypothesis generation" 
methods. The method "generation-strategy" has two subtasks and one transfer function of the "obtain" type. The 
idea is to ask an external agent (who that is, is defined in the communication model) what the grain size is of the 
data. Based on this information, the system will opt for one of the two generation methods. 

The task method of this supertask then defines how the tasks need to be combined to solve 
the overall problem. 

This approach works. However, you will sometimes find it is not optimal. You 
may discover that the reasoning process about how to combine tasks is a full knowledge-
intensive task in its own right. It is a task with a metalevel flavor. Reasoning about com-
bining tasks to achieve a goal is called "strategic reasoning." The reader is referred to the 
literature for references to work on strategic reasoning. Dynamic method configuration can 
also be seen as strategic reasoning. This is certainly an area for further development. 
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13.5 Bibliographical Notes and Further Reading 

The work of Gruber (1993, 1994) provides a good introduction to ontology research. Also, 
two special issues of the International Journal of Human-Computer Studies (Guarino 1995, 
Gaines 1997) provide useful sources of information. 

Catalogs of inferences have been proposed at a number of places. The first KADS 
project published a generic set of inferences (Breuker et al. 1987). In the context of the 
work on Role-Limiting Methods, work on a catalog of "mechanisms" has been undertaken 
(Klinker et al. 1991). The notion of "mechanism" is similar to that of inference. As men-
tioned in this chapter, Aben (1995) gives a good overview of formal methods for inference 
characterization. 

A recent special issue of the International Journal of Human-Computer Studies 
(Benjamins and Fensel 1998) gives a good overview of work on problem-solving meth-
ods. The use of multiple methods was already part of early work on the Components of 
Expertise approach to knowledge modelling (Vanwelkenhuysen and Rademakers 1990). 
"Strategic knowledge" was viewed as a fourth knowledge category in early versions of 
KADS, in addition to task, inference and domain knowledge. Work in the context of the 
REFLECT project (van Harmelen et al. 1992) approached strategic reasoning as a separate 
knowledge-intensive task, which reasons at a metalevel. This work has recently been fol-
lowed up in work on dynamic method selection and configuration (ten Teije et al. 1998). 
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14 
UML Notations Used in CommonKADS 

Key points of this chapter: 

• UML is a set of standard notations for methodology developers, originated 
from an object-oriented viewpoint. 

• The UML subset used within CommonKADS comprises activity diagrams, 
state diagrams, class diagrams (in adapted form) and, to a lesser extent, use-
case diagrams. 

• This chapter provides background information on these four UML nota-
tions. 

• The chapter can be used as a reference each time a notation is used in a 
previous chapter. 

14.1 UML Background 

During the 1990s a number of object-oriented analysis approaches have become popular, 
particularly the methods of Booch (1994), Rumbaugh et al. (1991), and Jacobson et al. 
(1992). Although there were many commonalities, there were also many differences in 
both coverage and notation used. This led leading researchers in this field to work on a 
joint notation for 0-0 analysis and design models. The idea was to set a standard for 
object-oriented analysis and design. The result is the UML notation, which has already 
gone through a number of versions. UML stands for "Unified Modelling Language" (not 
"Universal," which would have been a bit presumptuous). 

UML has received worldwide attention. It is being supported by a large number of 
companies in the software industry. It is important to realize that UML is in itself not a 
methodology. For example, UML does not provide a life cycle of software-development 
activities. UML can best be viewed as a proposal for a set of standard notations that have 
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turned out to be useful in software modelling and design. The UML notations should 
typically be imported into software development methodologies. An example of such 
a methodology is Catalysis (D' Souza and Wills 1998), which uses a subset of the UML 
analysis notations. 

CommonKADS follows a similar approach. In this chapter we describe the UML 
notations used within CommonKADS. These notations have already been mentioned at 
various places in this book: 

1. Activity diagram 
2. State diagram 
3. Class diagram 
4. Use-case diagram 

For each diagram we describe the basic elements, their notation, and for what purposes the 
diagram can be used within CommonKADS. We have not striven for a full coverage of the 
UML diagrams. In particular, some detailed notations for class diagrams have been left 
out. 

This chapter has been written as a reference text for the UML notations. For this reason 
we have made the text more or less self-contained, and therefore the description of the class 
diagram overlaps at some points with the domain-schema description in Chapter 5. The 
glossary at the end of this book provides a quick reference to the UML notations used. 

14.2 Activity Diagram 

14.2.1 Purpose 

An activity diagram models the control flow and information flow of a procedure or pro-
cess. Activity diagrams are best used if the procedure is not, or only to a limited extent, 
influenced by external events. This means that the control flow should be largely syn-
chronous. If external events dominate and create asynchronous control, a state diagram is 
a more appropriate modelling technique. 

Activity diagrams can be used at various levels of abstraction. For example, one can 
use an activity diagram to model the main tasks or activities in a business process. Alter-
natively, they can be used to model an algorithm. 

Activity diagrams are a useful diagramming technique in the context of Com-
monKADS. Two model components are most likely to benefit from this notation: 

1. Modelling the organization process (worksheet OM-2)  Activity diagrams are well 
suited for modelling the business process at a high level of abstraction. The notation is flex-
ible because it can model both control flow and information flow, and also the "location" 
where the process takes place. The business process drawn up for the housing case (see 
Figure 10.2 in Chapter 10) is a good example of the use of an activity diagram. 
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Figure 14.1 
Notation for activity states and activity-state transitions. 

2. Modelling the control structure of a task method  In CommonKADS it is common 
practice to use a form of limited pseudocode to model the control and information flow 
within a method. This is done in the control structure of a task method. The activity 
diagram provides an alternative graphical notation for describing this control structure. An 
example of using activity diagrams for method control modelling is given in Figure 5.24. 
This activity diagram models the control flow described for the simple diagnostic method 
diagnose-through-generate-and-test (see the car-diagnosis example in Chapter 5). 

14.2.2 Activity States and State Transitions 

The basic ingredient of an activity diagram is an activity state. An activity state is a state 
in which some work (activity, task) is carried out. The state terminates when the work is 
finished. This is the main difference with states in a state diagram: these typically terminate 
when certain (external) events take place. An activity is modelled graphically as a rounded 
box. The name of the activity state should be indicative of the activity or task being carried 
out in the state. Examples of activity states are shown in Figure 14.1. 

After termination an activity state can lead to another activity state. This is modelled 
through an activity-state transition. The graphical notation is a solid line with an open 
arrow. Two special circular symbols are used to model the start and stop states of the 
procedure. If no stop state is present, the process is cyclic (e.g., an indefinite loop). 

14.2.3 Decision 

State transitions are not always deterministic. It may be the case that control is transferred 
to one state or another depending on the outcome of the previous state. We can model this 
selection process with a decision. Figure 14.2 shows an example decision. 

A decision has an incoming state transition and two or more outgoing state transi-
tions. A condition (or "guard") on the outgoing arrow defines the situations in which this 
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Figure 14.2 
Notation for a decision. 

Figure 14.3 
Notation for concurrent activity states. 

branch is taken. The data involved in the condition should involve some piece of internal 
information. 

14.2.4 Concurrency 

In some cases activity states can be active in parallel. This type of concurrent activity can 
be specified with the split/join notation for control. An example is shown in Figure 14.3. 

The horizontal bar is used for splitting and joining control threads. In the example of 
Figure 14.3 we see four activity states related to having a dinner. We see that the activities 
of cooking dinner and choosing and opening an appropriate bottle of wine can be carried 
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Figure 14.4 
Notation for swim lanes in an activity diagram. The example concerns part of a business process of a company 
selling elevators. 

out in parallel. Only when both activities have been completed successfully can we enjoy 
our dinner. 

14.2.5 Swim Lanes 

In modelling a process in an organization it is sometimes useful to split the process into a 
number of areas. For example, when we want to model the process within a library it could 
be useful to separate the subprocesses concerning lenders from those in which the library 
staff is involved. For this purpose "swim lanes" are used in activity diagrams. Swim lanes 
are simply represented as rectangular boxes in which activity states are placed that belong 
to a particular subprocess. The agent or organizational unit to which the subprocesses 
belong is placed as a text label at the top of the box. State transitions can cross box borders. 
One activity state always belongs to one swim lane. 

Figure 14.4 shows an activity diagram in which two swim lanes are used to model 
part of the business process of a company selling elevators. The first swim lane describes 
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Figure 14.5 
Notation for object flow. Object flows are attached to transitions between activity states. The flow itself is shown 
as a dashed line extending from or leading to a state transition. 

activities related to the sales department of the company; the second swim lane concerns 
the design department of the company. 

14.2.6 Object Input/Output 

Modelling information input/output is not required in activity diagrams, but it is often 
useful to include this type of information. Because UML does not support (unlike its 
predecessor OMT) the traditional data-flow diagram (DFD) notation, this is in fact the 
only way in UML to show data dependencies between related processes. 

Figure 14.5 shows the notation for object flows. It was already included in Chapter 3, 
but is repeated here for convenience. This figure is a refined representation of the process 
modelled in Figure 14.4. We added an additional swim lane for the customer and included 
the major information objects involved in the process. 

As we see, object flows are attached to transitions between activity states. The flow 
itself is shown as a dashed line extending from or leading to a state transition. The notation 
:class-name stands for an anonymous object of the specified class (for details see the 
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Figure 14.6 
Sending and receiving signals in an activity diagram. Signals typically introduce the notion of external control 
into an activity diagram. 

section on class diagrams). It is common in activity diagrams to add an additional status 
label to an object (such as "entered" or "placed") if the object occurs more than once in 
an activity diagram. An object flow starting from a transition indicates that the object is 
created as a result of the activity state. An example is the object :tender, which is created 
as a result of the write tender activity. If one attaches an object input flow to a state 
transition (e.g., :customer-information in Figure 14.5) this means that the transition is 
dependent on the existence of this object. 

If the transition from one activity state to another is completely determined by the 
production of a certain object, the state transition can be replaced by introducing the object 
as an intermediate input-output flow between two activity states. An example of this is the 
placement of the :elevator-design object between two activities in Figure 14.5. 

14.2.7 Signals 

Activity diagrams typically show control within a certain process or procedure, without 
any limitations posed by the "outside world" (which is effectively everything outside the 
scope of the activity diagram). Interaction with the external world can be included in an 
activity diagram through the use of signals. 

UML distinguishes two kinds of signals: sending signals and receiving signals. A 
sending signal is shown as a side effect of an activity-state transition. The notion used for 
a sending signal is a convex hexagon; for a receiving signal it is a concave hexagon (see 
Figure 14.6). Signals come in pairs: sending signals should have receiving counterparts. If 
in the transition from one activity state to another a signal is sent or received, this is shown 
through two sequential state-transition lines. The intended meaning is that there is in fact 
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a direct transition between the two states with the signal as an explicit side effect of the 
transition. 

Signals are a way of showing how events influence the control of a process. If extensive 
use is made of signals, then consider changing the diagram format into a state diagram. 
State diagrams are the prime modelling method if external events govern process control. 

14.3 State Diagram 

14.3.1 Purpose 

A state diagram is a technique which helps to model the dynamic behavior of a system that 
is influenced by external events. The UML state-diagram notation is used in the commu-
nication model to specify the communication plan control. In addition, state diagrams can 
be used in the task model to describe task control, in particular asynchronous control. 

14.3.2 State 

A state models the state a system is in over a period of time. In object-oriented analysis 
one usually assumes that a state is always a state of some object class. Not all objects have 
"interesting" states. A good guideline is to develop state diagrams for all object classes 
with significant dynamic behavior. 

During a state activities and actions can be performed. An activity takes time, and 
can be interrupted by events that cause a state transition. An action, on the other hand, 
is assumed to be instantaneous from our modelling point of view. Actions, in contrast to 
activities, cannot be interrupted. Within states we can define three types of actions: 

1. entry actions, which are always carried out when a state is entered; 
2. exit actions, which are done whenever the state is terminated; 
3. event-based actions: some event occurs which does not trigger a state transition, but 

only the execution of an action. An example is the insert (coin) event in Fig-
ure 14.9. 

Figure 14.7 shows the UML notation for states: a rectangle with rounded corners. The 
first compartment contains the state name. This name should typically be a verbal form 
that indicates a time duration (usually ending with "-ing" such as "waiting" or "checking"). 
The second compartment contains any state variable you may want to introduce. A timer is 
a frequently encountered state variable in state diagrams. The third compartment contains 
the actions and activities connected to the state. The following syntax is used: 

entry / <action> 
<event> / <action> 
do / <activity> 
exit / <action> 
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Notation for a state. 
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Figure 14.8 
Notation for a state transition. The state diagram describes an airplane departing from an airport. 

14.3.3 State Transition 

Over time, system objects can go from one state to another. This is modelled with a state 
transition link between states. The nature of the state transition can be described with a 
textual annotation of the transition. The syntax of this text string is: 

<event> [ <guard> / <action> "send -message(<class>) 

An event causes a state transition to occur. If no event is specified, the state transition 
occurs once the activities carried out within the state are completed. A state without out-
going events is thus the same as an activity state in an activity diagram. Events come from 
"outside the diagram," e.g., from other objects or from external agents. 

A guard is a condition on the transition. Only if this condition is true, does the transi-
tion take place. Guards typically refer to state variables and represent different outcomes 
of processing performed within a state. 

An action is some process that always occurs when the state transition takes place. 
If all actions going out of a state have the same associated action, this action can also be 
placed as an exit action within this state (see earlier). Vice versa, if all incoming actions 
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Figure 14.9 
State diagram for a ticket machine. 

into a state have the same associated action, the action can be placed as an entry action in 
this state. 

Finally, the send-message clause sends a message to some other object. Such a mes-
sage will be received by the other object as an event. A send-event pair in a state diagram 
is the same as a sending-receiving signal pair in an activity diagram. 

An example of a state transition with a label containing all four ingredients is shown in 
Figure 14.8. The transition from the state ready-for-takeoff to the state airborne occurs 
when permission is received from the control tower (an event), under the condition that the 
final instrument check is OK (a guard). The action takeoff is executed when the transi-
tion occurs. The transition has the side effect of sending a message to the control tower 
confirming the takeoff. 

Similar to activity diagrams, state diagrams can contain start and stop states. The same 
symbols are used in both diagrams. State diagrams model possible behavioral states of an 
object of a certain class. As an example, a state diagram of a simple ticket machine is 
shown in Figure 14.9. 

The initial state is the idle state. There is no stop state. The process is modelled as a 
cycle. A new cycle starts when a coin is inserted. This leads to a state in which more coins 
can be inserted and in which one can select a particular ticket type. Once a ticket type is 
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selected the system goes into a state in which the transaction requested is checked. There 
are three possible outcomes of this processing selection state, which are all represented 
as guards. Based on the outcome the system will proceed with dispensing the ticket (and 
possibly some change) or return to the inserting money state. If the customer presses the 
cancel button, the system returns the balance. The same happens if no action is performed 
by the customer during a certain time period. Note that the states in the lower part of 
the diagram have no outgoing events. This means that the state transitions take place 
automatically once the work to be done (see the "do" activity) is completed. 

14.3.4 Aggregate States and Substates 

UML state diagrams have facilities for defining both aggregate states and generalized 
states. In the first case the aggregate stands for a set of concurrent substates. In case 
of a generalized state the system is in one of the possible substates. 

The official UML notation prescribes that substates are placed within the box of the 
aggregate state or superstate (consult the glossary or a UML textbook for details). In 
practice, we mainly use concurrent states without an explicit name for the aggregate state, 
and for this type of concurrency one can use the same notation as used in the activity 
diagram: a horizontal bar. Figure 14.10 shows an example of two concurrent states. The 
diagram models a cash machine in which card and cash are ejected in parallel (some cash 
machines do this in sequence). 

Concurrency is an important feature of object-oriented models. In practice, it also has 
become more important because the current generation of programming languages (Java, 
Ada) has built-in constructs for concurrency. This makes the implementation of concurrent 
processes much more feasible than it used to be. 

14.4 Class Diagram 

14.4.1 Purpose 

The purpose of a class diagram is to describe the static information structure of the appli-
cation domain. The class diagram is in fact an extension of traditional entity-relationship 
modelling. The extensions reflect the increasing requirements that are placed on the ex-
pressivity of information models. 

The diagram is part of the system analysis process and therefore should be phrased in 
domain terminology. The analyst should take care to avoid any commitment toward design 
details. The class diagram notation is the richest UML notation. Here, we only discuss the 
core elements of the class-diagram notation. 

The graphical notation for a domain schema in the knowledge model (see Chapter 5) is 
based on the UML class-diagram notations. There are three differences between a domain 
schema and a class diagram: 
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Figure 14.10 
Notation for state concurrency. The diagram models a cash machine in which card and cash are ejected in parallel. 

1. In CommonKADS the specification of information structure is decoupled from the 
specification of processes. Therefore, CommonKADS classes (i.e., concepts) do not 
specify operations (see further). This implies that we leave the third compartment 
empty, or omit it altogether. 

2. In a domain schema we introduce one additional notation for modelling knowledge 
structures, namely the "rule type". This is a typical extension needed from the perspec-
tive of knowledge-intensive applications. 

3. Finally, there are two terminological differences: 

a. "classes" in UML are called "concepts" in the domain schema; 
b. "associations" in UML are termed "relations" in the domain schema. 

These terminological differences have a historical background. In fact, it should not 
be a real problem. You can use "concept" for a class without operations. You can use 
relation and association interchangeably, because it cannot give rise to ambiguities. 

Taking these differences into account, class-diagram notations can be used freely in a 
CommonKADS knowledge model. The class diagram can also used in the task model to 
describe the general information types involved in a certain task or business process. 
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Figure 14.11 
Notation for classes. 

14.4.2 Class 

Classes are the central objects in class diagrams. Classes represent groups of objects in the 
application domain that share a similar information structure. Classes are shown as boxes 
with three compartments: 

1. The top compartment contains the name of the class (in boldface type). This name 
should be as precise as possible. Choosing the right names is an important skill for an 
analyst. 

2. The middle compartment contains a specification of the attributes of the class. An 
attribute is some simple piece of information that is common to all objects belonging 
to a class. For each attribute a value set is specified, indicating the range of possible 
values of the attribute. 

3. The lower compartment specifies operations that can be carried out on objects of the 
class. Operations may have parameters and a return type, but neither is necessary. The 
ID of the object is always implicitly assumed to be a parameter, and need not be listed 
explicitly. The syntax for the specification of operations is as follows: 

operation-name(parameter : type <, more parameters >) : return -type 

Figure 14.11 summarizes the graphical notation for classes. We usually assume a 
number of predefined value types that can be used in the attribute compartment and as 
parameter types: 

• string: list of printable characters, started and ended with a double quote 
• number: any numeric value 
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Figure 14.12 
Notation for an association. The diamond notation is the general one. The diamond symbol can be omitted in 
case of a binary association. 

• integer: value belongs to the subset of integer numbers 
• boolean: value is either "true" or "false" 
• date: value is some calendar date 
• universal: any value is allowed 

You can also define your own value set. Enumeration types are most frequent (see the 
"{hard-cover, paperback}" example for the attribute cover-type of class library-book in 
Figure 14.11). 

14.4.3 Association 

An association defines a relationship between classes. In a way, an association is similar 
to an attribute: it can be used to define a characteristic of an object in a class. Loosely 
speaking, associations are attributes whose values refer not to atomic values but to other 
objects. 

A typical example of an association is a married-to relation between a woman and a 
man. This sample association is shown in Figure 14.12. In the general notation for associ-
ations a diamond symbol is introduced and linked with the object classes to be associated. 
The diamond symbol can be omitted if it concerns a binary association. A binary associ- 
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ation is an association in which two object classes are involved. In that case, a direct line 
can be drawn between the object classes involved in the association. The object classes 
participating in the association are called "arguments" of the association. A number of 
features can be specified for an association: 

• Direction Names of an association may indicate a certain direction. For example, the 
association owned-by between a car and a person is directional: it can only be read as 
"car X is owned by person Y." The married-to association on the other hand does not 
imply a direction. Directionality of an association is indicated by carets attached to the 
association name' (see the associations in Figure 14.13). A direction only makes sense 
for binary relations. 

• Cardinality The cardinality indicates the number of times an object of an argument 
class can participate in the association. This is also called "multiplicity." Cardinality is 
specified as a textual annotation along the association line close to the argument type it 
refers to. In the case of the married-to association the cardinality is in both directions 
"0-1" meaning that both a man and a woman can have zero or one married-to asso-
ciations, which is more or less consistent with the Western view of marriages (always 
be aware of the context in which your models are valid). If no cardinality is specified, 
the default cardinality of "precisely one" is assumed. It is a good modelling guideline 
to challenge any "precisely one" association. Figure 14.13 shows some additional ex-
amples of cardinality specification. Central is the student object class. The diagram 
defines that a particular student can be enrolled in any number of courses, has precisely 
one major subject, should have at least one address, and may optionally be married. 

• Argument role When we specify an association, it can be useful to specify the role 
played by objects in the association. The married-to association provides a clear ex-
ample of roles: "husband" and "wife" are roles played by the man and wife objects in 
this association. The roles "employer" and "employee" in the works-for association in 
Figure 14.15 (see further) are also examples of argument roles. 

14.4.4 Association Class 

An interesting feature of associations is that they can have attributes of their own. For 
example, the wedding date is an attribute of the married-to association. It turns out that 
in many cases it is useful to treat associations as information objects in their own right. 
Associations act in many applications as kinds of structured, complex objects, for which 
one can define attributes, operations, and all the other stuff connected to object classes. In 
UML this can be achieved by defining an association class. 

The graphical notation for an association class is shown in Figure 14.14. The asso-
ciation name is placed in a class box. This class box is linked with a dashed line to the 

I In the knowledge model we used an arrow to model directionality, which is a small deviation from the UML 
standard. Choose the one you are comfortable with. 
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Figure 14.13 
Examples of different types of cardinality in associations defined for a "student" object class. 
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date: Date 
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registered in » 

Figure 14.14 
Notation for an association class. 

association. The analyst is free to add attributes, methods and the like to the associa-
tion class. In fact, from a modelling point of view there is no limitation on association 
classes when compared to "normal" classes. Association classes are an important abstrac-
tion mechanism in modelling applications and occur in almost every model with a certain 
degree of complexity. 

The need for an association class arises in the case where attributes cannot be placed 
in one of the association arguments. In the example in Figure 14.15 the attributes salary 
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employer employee 
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company name 
social security # 
address 
salary 
job title 

name 
« works for 1 + 

if you want to model that 
a person can work for 

more than one company, 
then change to 

Figure 14.15 
The need for an association class arises if attributes cannot be placed in one of the association arguments. In 
this example the attributes "salary" and "job title" can only be placed in the "person" object if we assume that a 
person works for just one company (this should be the intended meaning of the upper diagram). If this is not true, 
we have to create an association class and move the attributes to this class (cf. the lower diagram). 

and job-title can only be placed in the person object if we assume that a person works for 
only one company. If this is not true we have to create an association class, and move the 
attributes to this class. Some analysts would actually say that the association class is the 
preferred modelling method in both cases, because it captures the domain structure better. 

14.4.5 Generalization 

Generalization is one of the most common constructs in class diagrams. With generaliza-
tion we can build class hierarchies. We usually assume inheritance of object-class charac-
teristics (attributes, operations, and associations) from superclasses to subclasses. 

Figure 14.16 shows the notation for generalization: an open triangular arrow. In this 
example the association executer-of is inherited by all subclasses of agent. In Figure 14.17 
you find a second example of generalization concerning paragraph types in a document. 
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program 

 

    

Figure 14.16 
Notation for generalization. In this example the association "executor-of" is also defined for all subclasses of 
agent. 

We see here that object attributes are specified as high as possible in the class hierarchy. By 
specifying an object characteristic at the right level of abstraction, we achieve parsimony 
and avoid information redundancy. 

In many applications it turns out that one single hierarchy is too limitative to capture 
adequately the information structure in the domain. Therefore, UML offers a number of 
advanced techniques for generalization, including multiple inheritance and the specifica-
tion of multiple hierarchies along different dimensions. These issues are treated in more 
depth in Chapter 13. 

14.4.6 Aggregation 

An aggregation can best be viewed as a predefined binary association in which one ar-
gument plays the role of "aggregate" or "whole," and the other argument constitutes the 
"part." Part-whole relations occur in many domains. These relations can be used to model 
both physical as well as conceptual aggregates. An example of an aggregation is shown in 
Figure 14.18. 

The notation used is that of a line with a diamond symbol attached to the "whole" 
side of the association. Like any other association, cardinality can be specified for an 
aggregation relation. In the case of the audio system shown in Figure 14.18 we see that 
the system should have an amplifier, may have either two or four speakers, and optionally 
includes a set of headphones. 
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caption 
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Figure 14.17 
Subclasses of paragraph in a document. Attributes of the superclass are being inherited by the subclass, meaning 
that all paragraphs have a paragraph number. For some subclasses new attributes are being introduced. 

Figure 14.18 
Notation for aggregation. The example concerns an old-fashioned audio system consisting of a number of differ-
ent components. 
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Figure 14.19 
Notation for composition. 
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Composition Composition is a strong form of aggregation. If we define an aggregation 
as being a composition, we state that the "part" cannot exist without the aggregate. If 
the aggregate is deleted, all parts cease to exist. The graphical notation used to denote 
a composition is a black aggregation symbol. An example of composition is shown in 
Figure 14.19. A document is composed of an arbitrary number of paragraphs. Paragraphs 
derive their existence from being part of a document and cannot "live" as separate entities. 

Note that composition is typically a viewpoint from an application. Whether para-
graphs "really" cease to exist after deletion of a document they are part of is a matter of 
viewpoint. The discipline of "mereology" (the science of the part-whole relations) has a 
lot to say about this topic, but this falls outside the scope of the present work. 

Combined generalization and aggregation In practice, analysts often use a combina-
tion of aggregation and generalization to model complex objects. Figure 14.20 shows 
an example of the combined use of these techniques. The figure is a refinement of Fig-
ure 14.18. In the combined figure we can specify that at least one of the four input systems 
for sound carriers needs to be a part of the audio system, a fact that was difficult to express 
in Figure 14.18. 

14.4.7 Object 

Objects of a certain class are sometimes useful to include in class diagrams2 . The notation 
used is shown in Figure 14.21. The object name is bold underlined and followed by a colon 
and the name of the class it belongs to. One can also define an anonymous object by just 
writing :class-name  in the object box. The object notation is also used in other diagrams, 
such as the activity diagram. 

2 Strictly speaking, these diagrams are called object diagrams. 
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Figure 14.20 
Combining aggregation and generalization often provides an elegant modelling method. In this figure we can 
show that at least one of the four input systems for sound carriers needs to be a part of the audio system. 

airplane 
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Fokker 70 
:airplane 

 

Fokker 100 
:airplane 

  

:airplane 
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Figure 14.21 
Notation for class objects. 
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Figure 14.22 
Notation for use cases. Left: General notation for use cases and system. Right: Use cases in a library system. 

14.5 Use-Case Diagram 

14.5.1 Purpose 

Use-case diagrams are typically used in the early phases of system development. The 
diagrams show what kind of services a customer and/or user can expect from the system to 
be developed. Therefore, use-case diagrams are mainly a tool for the initial requirement-
engineering phase. The diagrams describe the system functionality from the outsider's 
point of view. It is useful as a communication vehicle between the developer and the 
customer. 

The diagram fits well with the agent model (see Chapter 3), where it can be used 
as a summary of agent interactions with the prospective system. Use-case diagrams can 
also be used as a technique to present the proposed solution to the customer or to other 
stakeholders. 

14.5.2 Use Case 

A use case is a service provided by a system3 . The system can be a software system or 
some other system in the world. Use cases interact with actors (see further) who are not 
part of the system. A use case is shown graphically as an ellipse with the name of the 
use case as a label. A use case is always placed in a rectangular box denoting a particular 

3 Our advice for people having problems with understanding the term "use case" (like ourselves): replace it in 
your mind with "service." 
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Example actors: 

actor lender librarian 

Figure 14.23 
Notation for actors. 

system. The name of the system is written in the upper part of the box. Figure 14.22 shows 
examples of the notation. 

14.5.3 Actor 

Actors are agents (i.e., humans or computer programs) that interact with the system. An 
actor makes use of services provided by the system or provides information for system 
services. Actors are defined at the "class" level, meaning that an actor stands for a group 
of actor objects. In a library system example actors would be "lender" and "librarian," but 
not individual lenders or librarians. Figure 14.23 shows the UML notation for actors. The 
name of the actor class is placed at the bottom of the actor icon. 

14.5.4 Relationships 

The most common relationship in use-case diagrams is the interaction relation between an 
actor and a use case. This is shown as a simple solid line between an actor and a use case. 
There can be many-to-many relations between actors and use cases. 

Figure 14.24 shows an example of a use-case diagram for the library system. In this 
case the actors are human agents. Typically, actors should be seen as roles played in 
an application setting. One human could play multiple roles, and thus take the form of 
multiple actors. 

In addition, the analyst can define generalization relationships. Generalization is 
treated in more detail in the section on the class diagram. In use-case diagrams the same 
notation is used (an open triangle arrow). A generalization can be defined between actors 
as well as between use cases. The latter is the most common form. In the case study in 
Section 14.7 we see an example of use-case generalization (cf. Figure 14.27). 
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Figure 14.24 
Notation for a use-case diagram. 

14.6 General UML constructs 

Apart from the various sets of diagrammatic notations, UML also has a number of general-
purpose notations. Here we mention two of these: stereotype and annotation. 

14.6.1 Stereotypes 

Stereotypes are a built-in extendibility mechanism of UML. A stereotype allows the user 
to define a new metatype. The standard metatypes of UML are the basic constructs like 
class and association. Sometimes, we like to distinguish certain subsets of classes, activity 
states, and so on. For example, if we use activity states to model a business process, we 
may want to distinguish between primary and secondary processes (see, e.g., Figure 10.2). 
We can achieve this by introducing stereotypes. Figure 14.25 shows the notation used for 
stereotypes4 . The name of a stereotype is placed above the construct involved (activity 
state, class, ...), enclosed in two angle brackets from each side. 

Stereotypes can loosely be viewed as kinds of supertypes. They are particularly helpful 
in increasing the readability of UML diagrams. 

14.6.2 Annotations 

The UML constructs are meant to convey the maximum amount of useful information 
for a particular purpose (e.g., expressing the static information structure for class-diagram 

4We use two angle brackets for indicating stereotypes. The official notation is to use guillemets, but this is not 
supported by many word-processing systems. The two angle brackets are a reasonable approximation. 
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Figure 14.25 
Notation for stereotypes. 
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in UML diagrams which cannot 
be expressed otherwise 

Figure 14.26 
A UML annotation. 

constructs). However, sometimes we feel the need to include some additional piece of 
information, which is not easily modelled with a predefined notational construct. For such 
a situation UML uses a general annotation construct. The graphical form is shown in 
Figure 14.26. Annotations can be included in every UML diagram. They do not have any 
formal status. 

14.7 A Small Case Study 

14.7.1 Problem Statement 

A university department offers about thirty courses for students. Most of the students 
are following the major program offered by the department. In addition, students from 
other programs follow the courses (typically some 20%). Like many other departments, 
the department wants to have software for course enrollment, storing and retrieving exam 
results, and other administrative stuff related to courses and students. The prospective 
system has received the name "CAS" (for course administration support). It is the purpose 
of this case study to show how one can specify the data and functions for CAS, using the 
UML notations discussed earlier. 

We have not striven in this case study for completeness. We use the case study mainly 
as a means of demonstrating the use of the four diagramming techniques. 
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student 

Figure 14.27 
Use-case diagram for the CAS application. 

14.7.2 Use-Case Model 

In a use-case diagram we can express the services that are expected from the CAS system. 
First, we have to identify a number of actors that interact with the system. In this example 
we have limited the set of actors to student, tutor, and the administrative staff 
of the department. 

The system is expected to provide the following services to these actors: 

• Personal student data: A student can change his or her own personal data, such as 
home address and telephone number. The administrative staff should be able to do this 
as well. 

• Course information: Students can access information about the courses that are being 
taught by the department. The tutors should be able to both access and update the 
course information. 

• Course enrollment: Students can enroll in a course. Tutors and administrative staff 
should be able to look at the enrollment status of courses. 
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• Exam results: A student can get access to his personal exam results. The tutors and 
the administrative staff have access to all exam results. The exam results can only be 
entered by the administrative staff. 

The use-case diagram in Figure 14.27 shows how these services can be represented as 
use cases with which actors interact. The use cases at the top of the system box are an 
example of the use of a generalization relation between use cases. The use case browse 
exam results is a generalization of the browsing of results on an individual basis (this 
is a service for all three actors) and browsing of results per course (which is only allowed 
for tutors and administrative staff). 

14.7.3 Class Diagram 

In the class diagram in Figure 14.28 we have focused on the static information structure, 
and not paid attention (yet) to operations. This is typical of the early phases of analysis, as 
operations are often only added at a later stage. 

In the class diagram we see the main object classes of this domain. The class course is 
a central entity. Courses have tutors. "Tutor" is a defined here as an association between a 
course and a university staff member. From the cardinality specification we can see that 
the staff members may teach any number of courses (including zero), and that courses have 
at least one tutor, but possibly more. Courses also can be related to other courses through 
the requires association. This can be used to define prerequisites for courses. 

Students and courses can be related through the enrollment association. We see here a 
typical example of an association class. An enrollment is an information object in its own 
right. For example, we like to store data about the enrollment date. Also, we can link an 
enrollment object to the exam results of a student for a course. Note that the purpose 
of building a class diagram is to capture an adequate view of the domain information 
structure. If we would design a database scheme, other considerations come into play. 
That is, however, not our present concern. 

The diagram is somewhat simplified for presentation purposes. For example, the stu-
dent information is in reality more extensive. 

14.7.4 Activity Diagram 

Activity diagrams are useful when modelling procedures and processes within a system. 
An example in the CAS example is the enrollment procedure. An activity diagram for this 
procedure is shown in Figure 14.29. 

The first activity in this diagram is concerned with entering the enrollment request. 
Once this piece of work is finished, two parallel "check" activities are started, namely 
(1) checking whether the student has fulfilled the course preconditions, and (2) checking 
whether the student limit for the course is not exceeded. Both activities are followed by a 
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Figure 14.28 
Class diagram for the CAS application. 

decision point. Only if both checks are OK (see the horizontal bar for control joining) is 
the enrollment registered. 

This enrollment is a typical process for activity modelling. The process is not governed 
by events from outside. If the latter is the case, it is better to use a state diagram. 

14.7.5 State Diagram 

The CAS system is basically a query system, and therefore from the information-
processing point of view not really dominated by external events (for the user-interface 
side this may be different). Therefore, there is in this application not much need for state 
diagrams. We have included one state diagram for the "update student data" procedure. 
Student personal data are stored in a general university database. For this reason, the up-
date service of the CAS system should first send a change request to the university database, 

• 41 
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Figure 14.29 
Activity diagram for course enrollment. 
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Figure 14.30 
State diagram for updating personal student data. 
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and only change the local database if an acceptance answer is received. The corresponding 
state diagram is shown in Figure 14.30. We have included a state variable timer in the 
waiting state. If no answer is received from the university database within a certain time 
limit, the update process is cancelled. 

This procedure could also have been modelled with an activity diagram in which two 
send/receive signals are placed. In case of a limited number of external events, the choice 
between the two types of diagrams is mainly a matter of personal preference. 

14.8 Bibliographical Notes and Further Reading 

Up-to-date information about UML and related subjects can be found via the website of 
the Rational Rose company: 

http://www.rational.com  

For a full UML overview the reader is referred to textbooks such as Booch et al. (1998) 
and Eriksson and Penker (1998). 
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15 
Project Management 

Key points of this chapter: 

• Knowledge project management needs careful attention, but is otherwise 
based on straightforward principles rooted in common sense and systematic 
thinking. 

• How to strike a balance between rigorous control and the need for adapt-
ability and flexibility. 

• How to decompose a project into manageable pieces: the concepts of project 
cycles and model states. 

• How to carry out a risk analysis. 
• How not to manage a knowledge-system project. 

15.1 Control versus Flexibility: Striking the Balance 

Software projects have the reputation of being difficult to control. Since much expert 
knowledge is tacit, this holds even more for knowledge-system projects. Notwithstanding 
this, there is a need for control, since projects are required to deliver expected results 
on time, within budget, and with prespecified quality. The question we discuss in this 
chapter is how one can achieve this, while at the same time knowledge projects often 
have something of a learning character, so that the structure of knowledge may turn out 
to deviate from what was anticipated, requirements may change in the process, and goals 
must accordingly be adjusted along the project route. 

The classic way to control software projects is depicted in Figure 15.1. In software 
engineering it is known as the waterfall model, but it is an approach quite typical of many 
different areas of project management. The essential idea is to break down a project into a 
sequence of separate and prespecified phases, each phase resulting in its own distinct type 
of deliverables and associated documentation. 
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Figure 15.1 
The classic "waterfall" life cycle for software engineering. 

The strategy phase, for example, ends with a document outlining the results of a fea-
sibility study, the project brief, i.e., the business goals the project is supposed to meet, 
and the project plan. The information analysis phase starts from here, and delivers a re-
quirements document based on the structure, flow, and control of the information that is 
to be processed by the prospective system. Then the design stage turns this into a tech-
nical system specification of the architecture and software module structure in relation to 
the chosen software and hardware platform. Next, the system is programmed accordingly, 
integrated, and tested, after which it is handed over to the user organization. At this point, 
system development is completed, and the operational life of the system has started. From 
the software engineering point of view, the work done on the system is called maintenance, 
although in practice often many new requirements and new functionalities are introduced 
in the course of time. The system life cycle ends when it is phased out or decommissioned. 

Thus, characteristic of the waterfall approach is its linear sequence of prefixed phases. 
The result of each phase has to be accepted and signed off by the customer. In project 
management terms, therefore, the end of each phase usually represents a milestone of the 
project at which a go/no-go decision is taken for the next phase. If one would carry out 
a knowledge system project according to the CommonKADS methodology, but within a 
waterfall framework, it would probably be phased as follows: 

1. Scoping and feasibility study (organization model, Chapter 3); 
2. Impact and improvement study (task and agent models, Chapter 3); 
3. Knowledge analysis (knowledge model, Chapter 5); 
4. Communication interface analysis (communication model, Chapter 9); 
5. System design (design model, Chapter 11); 
6. Knowledge-system implementation (Chapter 12). 

17■ 
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Figure 15.2 
Rapid, evolutionary prototyping approach to software system development. 

A strong advantage of the waterfall model is that it provides a very clear-cut handle 
for managerial control. However, practice has shown that it has a number of disadvantages 
as well: 

• The early phases are mainly document-oriented, and visible and operational results in 
terms of software that can be tried out and judged by end users appear only rather late 
in the life cycle. Hence, it is sometimes difficult to see progress and to maintain the 
confidence in the project by stakeholders such as managers, clients and prospective 
users. 

• Prefixed phases make changes during the project — owing to changed external cir-
cumstances, new insights gained from ongoing work in the project, changing needs 
and requirements — very difficult and costly. So, the waterfall model is very rigid. It is 
adequate for applications for which the road to go is clear well in advance, for example, 
yet another database or spreadsheet application that is based on many similar previous 
experiences within the organization. It does not work for advanced information sys-
tems or innovative projects where uncertainty or change plays a role. Therefore, it is 
also not very well suited for knowledge-intensive systems projects. 

Other models for the software process have therefore been developed that produce 
useful results at an earlier stage and are more flexible in dealing with uncertainty and 
change. One such model, called an evolutionary or prototyping approach, is shown in 
Figure 15.2. It may be considered as the extreme opposite of the waterfall model: it aims to 
produce practical results quickly in a number of iterative improvements based on learning 
from the previous cycle. So it is highly adaptable and experimental. This is its strong 
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Figure 15.3 
The spiral model for the software life cycle. 

point as well as its weak spot: due to its lack of structure it is not really possible to come 
up with sound project goals and plans in advance. The prototyping approach has been en 
vogue for quite some time in the childhood years of expert systems, but experience has 
shown that it is hard to keep managerial control over such projects. Rather than being 
planned and controlled, they emerge and unfold organically over time. But, as with the 
waterfall approach, this is not what you really want for projects that aim at industry-quality 
knowledge systems. Neither extreme rigidity nor extreme flexibility yields the solution for 
knowledge projects. 

A model for software development that attempts to combine the good features of both 
the waterfall and prototyping approaches has been proposed by Barry Boehm (1988). It 
stems from the area of complex large-scale information systems, as found in large govern-
ment software projects, and in defense and high-tech industries such as aerospace and so 
on. As the straight line symbolizes the waterfall approach and the circle represents the pro-
totyping approach, this intermediate approach is known as the spiral model, as depicted in 
Figure 15.3. The four quadrants indicate recurring and structured steps of project manage-
ment activity. Through this, the aim is to achieve progress by means of subsequent cycles 
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that may be adapted on the basis of experience from previous cycles. Depending on the 
situation, one may decide for analysis and design documents as in the waterfall model, but 
also for prototyping activities if these are judged to be more illuminating or useful. In this 
way, the spiral model aims at striking a balance between structured control and flexibility. 
The CommonKADS approach to the management of knowledge projects has grown out of 
this idea of a spiral development. 

15.2 Project Planning: The CommonKADS Life-Cycle Model 

The CommonKADS life-cycle approach is based on the following principles: 

• Project planning concentrates first of all on products and outputs to be delivered, rather 
than on activities or phases. 

• Project planning is done in a configurable and adaptive manner in terms of spiral-like 
cycles, which are driven by a systematic assessment of the risks to the project. 

• Quality assurance is an integrated part of project management, due to the fact that qual-
ity is "engineered into" knowledge-system development through the CommonKADS 
methodology. 

These principles are practically supported by two important elements of the Com-
monKADS methodology: (1) the model suite, as discussed in the previous chapters, and 
(2) the project management cycle, as displayed in Figure 15.4. The project management 
cycle consists of four activities — review, risk, plan, and monitor — that recur in every 
cycle of the project: 

1. Review This is the first stage in the project management at each cycle. The current 
status of the project is reviewed, and the main objectives for the upcoming cycle are 
established. For the initial round, cycle-0, an overall project plan, including a quality 
plan, is developed. Internal and external constraints on the project are reviewed and 
alternatives are investigated by the project manager. An important task to close off the 
review stage is to ensure the commitment of the various stakeholders of the project, 
which may include managers and decision-makers involved, customers, prospective 
users, experts. 

2. Risk The general directions for the project as set at the review stage constitutes the 
input for the second project management stage: risk assessment. The obstacles that are 
potentially in the way of success of the project are identified, and their significance is 
assessed. How to do this is discussed in detail in the next section. Needed counter-
actions are decided upon by the project manager, and fed into the subsequent stage: 
planning. 

3. Plan Given a clear view obtained in the previous two stages on objectives, existing 
risks, and associated actions to be undertaken, the next step is to make a detailed plan 
for the next cycle. This covers the standard planning activities in project management, 
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Figure 15.4 
The CommonKADS configurable life cycle, based on the spiral model, for knowledge system projects. The four 
quadrants indicate the stages and activities to be carried out in project management. 

including establishing a work breakdown structure in terms of tasks, a schedule of these 
tasks, e.g., with the help of a Gantt chart, allocating the needed resources and personnel 
to these tasks, and agreeing on the acceptance criteria for the work to be carried out. 

4. Monitor After this, the next cycle of development work commences. The progress 
of this work is being monitored and, where needed, steered by the project manager. 
The meetings with stakeholders relating to the acceptance of the work in the current 
cycle are being prepared, and the produced outputs are evaluated. The results of this 
evaluation are then fed into the next stage, the review part of the next cycle. 

15.3 Assessing Risks 

A salient feature of the CommonKADS life cycle is that project planning is based on a 
systematic consideration of the risks to the project. Therefore, before detailed planning of 
the next cycle begins, a stage of risk assessment takes place (see the second, lower-right 
quadrant in Figure 15.4). This is the second stage in the project management cycle. Here, 

.77 
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Project Management Risk Assessment Worksheet PM-1 
RISK AFFECTED 

QUALITY 
FEATURE 

LIKELI- 
HOOD OF 
OCCUR- 
RENCE 

SEVERITY 
OF EFFECT 
ON PROJECT 

RANK OF 
RISK 

COUNTER-
MEASURE 

Risk 
identifier and 
nature 

Quality 
feature at 
stake due to 
risk 

Very low, 
low, 
medium, 
high, very 
high 

Very low, 
low, 
medium, 
high, very 
high 

Ranking 
number, 
based on 
product of 
likelihood 
and effect 

Action to be 
taken against 
risk 

Tab e 15.1 
Worksheet PM-1: Worksheet for carrying out project risk identification and assessment. 

the aim is to identify what kind of risks exist that may hamper the progress of the project, 
to estimate how likely they are to occur, and, if so, how severe they impact the project 
as a whole, in order to design adequate countermeasures against the important risks. The 
analysis of project risks can be conveniently done with the aid of the worksheet given in 
Table 15.1. A list of risks commonly encountered in knowledge projects is given can be 
found at the CommonKADS website. This list can be used as a checklist by the project 
manager. 

As an example, a commonly occurring risk is that the expert is difficult to get access 
to and has not much time available. This will endanger the intended functionality of the 
system (see the quality feature tree of Figure 15.6). In many situations, the probability that 
this risk actually will occur is quite high, and so is the severity of its impact on the overall 
project. Thus, this kind of risk will be ranked with a high priority, and high-level man-
agement action may be needed as a countermeasure to reduce this risk. Another example 
of risk is that during knowledge modelling end users of the future system have no clear 
idea of what exactly is going on and wonder about the usability of the system. Such a risk 
might be countered by deciding to develop and demonstrate a prototype for the graphical 
user-interface. Thus, the actions following from such a risk assessment will help to shape 
project planning for the next cycle. 

15.4 Plan: Setting Objectives through Model States 

We pointed out that the CommonKADS life-cycle approach concentrates first of all on 
setting objectives in terms of outputs to be delivered, rather than activities or phases. Here, 
the model suite plays a key role. Project objectives for a cycle are expressed and measured 
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Model State Planning Worksheet PM-2 

Attribute Description 
MODEL NAME One of the CommonKADS models: organization, task, agent, knowledge, 

communication, design model. 
STATE VARIABLE A part or component(s) of the selected model on which project work is to done 

(e.g., the inference layer of the knowledge model). 
STATE VALUE An indicator of the degree of completion to be achieved by the work on the 

selected model component(s). The following qualitative five-point range is 
useful: 
1. Empty: The starting state value, indicating that no work has been done yet. 
2. Identified: Basic features relating to the selected model component(s) have 
been listed. These may refer to essential characteristics of the model component 
(e.g., the task decomposition shows the typical features of an assessment type of 
task), identifying external requirements and inputs (e.g., listing the information 
sources that will be used for the work on the model). 
3. Described: The modelling or implementation work has been fully carried 
out. This is the level of a complete first version or draft. 
4. Validated: The work done is tested, verified, and validated with respect to 
outside criteria or sources (e.g., against given quality measures, external 
requirements, or by checking the correctness of developed models with relevant 
experts). 
5. Completed: The work on the model component is finished according to the 
established acceptance criteria (e.g., being accepted and signed off after a 
review with the client). 

QUALITY METRICS The quality metrics according to the quality plan that will be used to measure 
whether the desired model state has indeed been achieved. Also, the procedure 
to establish this is to be indicated here. 

ROLE This is an optional attribute of a model state. It can be used to indicate that a 
model state plays a specific role in a project, e.g., as a milestone at which a 
go/no-go decision is to be taken. 

DEPENDENCIES This is an optional attribute: sometimes it is useful to indicate that achievement 
of a model state critically depends on certain external inputs (e.g., a 
management decision to be taken, equipment to be available, or results from 
another part of the project to be finished). 

Table 15.2 
Worksheet PM-2: How to describe a model state, as an objective to be achieved by the project. 

in terms of a certain degree of completion of one or more models, to be achieved as an 
output by the work in the upcoming cycle. This concept reflecting the degree of completion 
of a CommonKADS model is called the model state. How a model state is described is 
indicated in Table 15.2. 

Project planning (the third, lower-left quadrant in Figure 15.4) is thus based on setting 
objectives for the next project cycle in terms of the model states, following the approach 
given in Table 15.2. In essence it is quite simple, as the project manager has to go over the 
following checklist of questions: 
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Project Management 
Set objectives 

- understand 
current situation 

Define target model states 
OM: problem description 

= validated 

Plan 
development activities 

Identify risks 
- problem description 

incomplete   
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Development 

OM: process.* OM: structure 
= described = described 

current model new model description 

Quality • M: problem problem": 
Control = validated = described"! 

TM: time load decomposition 
= described = described 

Figure 15.5 
Example project management cycle with associated development activities. The arrows indicate the sequencing 
of activities. OM, organization model; TM, task model. 

1. What model(s) are to be worked on in the next cycle? 
2. On which component(s) of this model should the development work focus? 
3. To what degree or extent must this be carried out in the upcoming cycle? 
4. By what means, resources, development method, or technique? 
5. How do we establish that the desired end state has been reached? 
6. How do we measure that its quality is satisfactory? 

It is important to note that the first three questions make the project life cycle con-
figurable and scalable. It is at the discretion of the project manager to decide on which 
model, model components, and/or software modules the project will work on in the next 
cycle. This is based on the outcomes of previous cycles, so that the project is able to learn 
from experience, and can adapt to changing needs or circumstances in a flexible way. 
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An example of a project management cycle is depicted in Figure 15.5. Suppose we 
are at the very beginning of a knowledge project. Then, it is often necessary to gather 
relevant information from the different parties involved to understand the current situation 
better (review stage, upper left). A major risk may be that the problem to be solved, 
as it is perceived by the various parties in the organization, is not really fully clear for 
the project team (risk stage, middle upper left). For example, the project team may in 
part come from another part of the organization, as is often the case with separate IT 
development departments. Thus, in planning the first cycle of the project (plan stage, 
upper right), it is important to achieve a state whereby the problem description has been 
validated by the relevant outside parties to the project (e.g., the key decision-makers at 
the management level). Development activities are planned accordingly, for example, by 
scheduling meetings or interviews with those decision-makers. The bottom part indicates 
the monitor stage of the project management cycle, where the actual development activities 
are carried out. Here we see example components from organization and task modelling, 
as treated in Chapter 3. The results of the development work are then evaluated against the 
project and quality plan, after which a new project cycle begins with a new review stage 
(middle left). The next round of the spiral commences. 

15.5 Notes on Quality and Project Documentation 

Acting as a project manager requires active involvement in a wide, even disparate, variety 
of tasks. To summarize what a project manager should take care of it is helpful to give 
a concise overview of the project management documentation that is typically produced 
in the course of a knowledge project. We will do that in this section, along with some 
supporting checklists. 

CommonKADS project documentation is listed in Table 15.3. The documentation of 
each cycle is outlined in Table 15.4. 

As we may expect, much of the documentation applies generally to any project. The 
cycle reports constitute the project management documentation that is most specific for 
knowledge projects, as it follows from the CommonKADS life-cycle model. But note that 
similar documentation will occur in other areas of information-system development, where 
a spiral approach is employed as the model for project management. 

The quality plan, as indicated above, is an important part of any project plan as it 
is developed in the initial cycle (cycle-0). Quality attributes relevant to knowledge sys-
tem projects are presented in Figure 15.6. The lower part is representative of information 
systems in general. The upper two branches of the tree are characteristic for knowledge-
oriented projects. The branch indicated as knowledge capture refers to the quality features 
of the activities of knowledge acquisition, modelling and validation as carried out by the 
knowledge engineers in the project team. The knowledge usability branch denotes the qual-
ity features of the knowledge as it will be embedded in the prospective system. Thus, this 
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Knowledge Project Documentation 

Project plan At the initiating cycle of the project (cycle 0) an overall project plan is developed. It is up- 
dated as necessary as the project progresses. This overall project plan will typically cover the following 
topics: 

• Project motivation, background, scope, goals. 
• Project deliverables. 
• An overall work breakdown, covering the list of project cycles and an associated description of project 

tasks and schedule. A more detailed description for each cycle is given in the cycle documentation 
(see below). 

• Overall resources available to the project within any established budget. 
• Project organization, personnel, external dependencies, reporting relationships, training, and experi-

ence. 
• References to the contract and other relevant external or background material. 

Quality plan This plan is also produced at the initiating cycle of the project (cycle 0), in conjunction with the 
above overall project plan. The important elements of the quality are treated separately later on in in this 
section. 

Cycle documentation For each cycle, a more detailed management document is produced. Its structure and 
content is discussed in the separate box immediately below. 

Project close down report At the end of a project, it is worthwhile to produce a document that evaluates the 
project as a whole. Such a report will cover the lessons learned for the organization from the project, and 
indicate recommendations and proposed guidelines for the future. This may refer to different areas, e.g., 
follow-up work, improvements to the quality system, intercompany and client cooperation, or staffing, 
resourcing, and training issues. 

Table 15.3 
Overview of project documentation. 

branch represents the view of future users and beneficiaries of the knowledge, which often 
are mainly outside the project. 

For the most part, therefore, the quality plan for knowledge projects has the same 
structure and covers the same topics as is the case for other information systems. Table 15.5 
provides a checklist of the main elements in a quality plan. 

A key element in the contract and the project plan will always be the set of deliverables 
that the project is required to produce. A default list is given in Table 15.6. 

Note that this standard list is only to be used as a general guideline. Depending on 
the size and nature of the project, changes in the list will have to be made by the project 
manager. For example, in exploratory projects it may be that only the first two deliverables 
are needed. In small projects it might be useful to combine deliverables (for example, on 
knowledge modelling, communication, design, and test), while in large projects it may be 
wise to split up deliverables (for example, split up the knowledge-model document into 
parts regarding task structure, domain knowledge, and problem-solving methods). This 
possibility of breaking up or combining deliverables is precisely the idea behind a spiral 
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Project Cycle Documentation 

At each cycle of the project, a specific cycle document is created at the start, and completed as the cycle 
progresses. In its structure, it follows the review-risk-plan-monitor project management activities, as we have 
discussed them above (cf. Figure 15.4). Hence, cycle documents will typically cover the following topics: 

• Review 

— Position and purpose of the cycle within the overall project plan 
— Summary of the outcome of the previous cycle, defining the starting point of the current cycle 
— Cycle objectives and outline plan 
— Constraints, considered alternatives, choices made for the cycle 

• Risk 

— List and explanation of identified risks 
— Risk assessment according to the worksheet PM-2 given in Table 15.2 
— Resulting conclusions for the cycle plan and development approach 

• Plan 

- Cycle plan, covering task breakdown, resource allocation, cycle outputs, accounting for the risk assess- 
ment and detailing the overall project plan 

- The cycle outputs are based on the concept and definition of CommonKADS model states, according to 
the worksheet PM-1 given in Table 15.2 

- A description of the (agreed) acceptance criteria, on the basis of which the planned cycle outputs will be 
evaluated 

• Monitor 

— Periodic progress reports, as standardly required by the organization 
— Records of acceptance assessment meetings evaluating the cycle outputs 
— Concluding review of the actual results measured against the expected project progress, as an input to the 

next cycle 

Table 15.4 
Overview of project cycle documentation. 

development approach. The decision on this rests with the project manager, in agreement 
of course with the outside decision-makers that are involved. This is an important element 
in the configurability and scalability of the CommonKADS life cycle. 

In the development of conventional information systems, usually a requirements doc-
ument is produced that defines what the purpose and content of the system is supposed 
to be from the viewpoint of the client and user. In CommonKADS, essentially the model 
suite as a whole plays a role equivalent to that of a requirements document. Because 
the requirements document is such a major element in many conventional development 
methodologies, we show how it maps onto the CommonKADS model suite components 
in Table 15.7. The indicated structure of a requirements document has been adopted from 
standards such as the IEEE Guide to Requirements Specification. 
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1. Introduction and scope 
2. Organization and responsibilities 
3. Deliverables 
4. Requirements tracking 
5. Documentation plan 
6. Standards, procedures, conventions 
7. Methodology, techniques, tools 
8. Subcontracting and purchasing 
9. Quality features and metrics (cf. Figure 15.6) 

10. Reviews of project work and management 
11. Quality system and quality assurance records 
12. Configuration management and change control 
13. Verification and validation plan 
14. Model development plan 

Table 15.5 
Topics covered in a quality plan. 

1. Scoping and feasibility study (organization model) 
2. Impact and improvement study (task/agent model) 
3. Knowledge model report 
4. Design report (including design and communication models) 
5. Software deliverables 
6. System documentation (including user manual, installation and 

maintenance guide) 
7. Test report on knowledge verification and validation 

Table 15.6 
Default list of project deliverables. 

As a final note, a major concern for project managers is always to keep control over the 
budget and human effort spent on the road toward achieving the project goal. In planning 
and managing a knowledge project, it is therefore necessary to have an advance estimate of 
the effort needed to carry out different activities, such as knowledge modelling, organiza-
tional analysis, design and implementation. Actual data on these aspects are currently lim-
ited, however. As in software-engineering economy in general, every organization should 
gather its own specific data to get a grip on the costs incurred by knowledge projects. 
Data that are available suggest that the economy of knowledge projects is similar to that 
of other advanced complex information systems. Typical, but rough, indicators are given 
in Table 15.8. The more knowledge intensive an application is, the more effort has to be 
relatively spent to knowledge acquisition, modelling, and validation. This is analogous to 
information systems in general, where a global rule is that information analysis and design 
take a greater portion of the total effort with increasing complexity of the application. 

101..111114.011111161 ,  
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Requirements document section CommonKADS equivalent 
Introduction 
Scope Project plan; scoping and feasibility report 
General description 
Objectives 
Expected future enhancements 

Contract; project plan 
Impact and improvement report 

Organizational requirements Impact and improvement report 
Functional requirements Task model 
Interface requirements 
Human factors and human-computer interaction 
Explanatory requirements 
Hardware and software interfaces 

Agent model; communication model 
Communication model 
Organization model (computing resources); 
communication model; design model 

Information requirements Knowledge model 
Performance requirements 
Information storage requirements 

Design model 
Knowledge model (domain knowledge); design 
model 

Design constraints 
Development environment constraints 
Operational environment constraints 

Design model 
Organization model (target); design model 

Resource constraints Contract; project plan 
Quality constraints 
Verification requirements 
Attributes 
Acceptance testing requirements 

Quality plan (verification and validation plan) 
Contract; quality plan 
Contract; quality plan (standards) 

Other requirements 
Installation requirements 
Documentation requirements 

Organization model; design model 
Contract; project plan 

Glossary 
References 

identical 
identical 

Table 15.7 
A conventional requirements document and how it maps onto the CommonKADS model suite. 

Effort Distribution in Knowledge-System Development 
Activity Percentage 
Project management 10% 
Organization-task-agent models 10% 
Knowledge modelling 30% 
Design and communication models 20% 
Implementation and testing 25% 
Quality assurance 5% 

Table 15.8 
Rough distribution of efforts spent in the various activities in a typical knowledge system project. 
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Figure 15.7 
Schematic diagram of a nuclear reactor. The type shown here is a so-called pressurized water reactor. 

15.6 Case: A Project on Nuclear Reactor Noise Analysis 

15.6.1 Application Domain and Project Brief 

Noise is a naturally occurring phenomenon in many technical and nontechnical systems, 
and it is found in very diverse domains, such as acoustics, mechanics, and electromag-
netism. It is the joint result of a large variety of small signals caused by the various com-
ponents of a working system. Noise is not only annoying but also of practical interest: 
its analysis can yield valuable information about the state of a system. It is the basis, for 
example, of seismic investigations. By comparing noise signals produced by a system with 
those generated by a reference system that is considered to be of excellent quality, one 
can distinguish between good and poor products or equipment. That's why it is used in 
industry for product quality control, and for condition monitoring of production process 
equipment for the purpose of early failure detection and predictive maintenance. 

At the Netherlands Energy Research Foundation ECN, a specialist group has been 
working for many years on noise analysis of nuclear reactors. reactor gives a simple 
schematic of a nuclear reactor. Nuclear fission reactions in the core of the reactor ves-
sel produce heat. This heat is transported by boron-carrying coolant water that is pumped 
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Figure 15.8 
An example of a noise spectrum of a nuclear reactor, as measured by the neutron detectors. 

through the core to a steam generator that drives a turbine. This creates forces on the core 
as a result of which it will vibrate within the reactor vessel. This generates noise that can 
be measured with the help of the neutron detectors located around the vessel. An example 
of a measured noise spectrum is displayed in Figure 15.8. It shows the energy fluctuations 
measured by the neutron detectors as a function of the frequency. It is the specialist's task 
to interpret the meaning and importance of these fluctuations. 

Noise analysis of spectra such as those in Figure 15.8 enables one to infer important 
physical parameters of the reactor. For example, one can derive the so-called reactivity that 
indicates how many new neutrons are generated through the nuclear fission reactions. This 
parameter should remain stable and below a threshold value. For noise analysis, delicate 
mathematical theories, algorithms, and computer packages are available. These are limited, 
however. For the interpretation of the produced information in diagnostic terms it appears 
that noise analysis experts are usually involved. Therefore, the idea sparking off the project 
was that a knowledge system might be a useful tool in enhancing existing mathematical 
software by supporting the diagnostic interpretation of the system condition. This would 
make noise analysis more widely applicable. The project brief was to investigate to what 
extent this was indeed the case. 
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Project Management Risk Assessment Worksheet PM-1: 
Noise-Analysis System: 

RISK AFFECTED 
QUALITY 
FEATURE 

LIKELIHOOD 
OF 
OCCURRENCE 

SEVERITY 
OF EFFECT 
ON PROJECT 

RANK 
OF RISK 

COUNTER-
MEASURE 

Lack of 
acquaintance 
with domain 

Knowledge 
capture 

Very high Very high 1 Study domain 
literature, make 
glossary, 
on-the-job 
training with 
expert group. 

Unknown 
complexity 
of task 

Knowledge 
capture 

Very high High 2 Focus knowledge 
acquisition with 
experts early on 
this topic by 
empirical 
scenarios. 

Limited 
availability 
of expert 

Knowledge 
capture and 
usability, 
functionality 

High High 3 Develop contacts 
also with other, 
outside experts. 

Table 15.9 
Worksheet PM-1: Risk analysis for the nuclear reactor noise analysis and interpretation system. 

15.6.2 First Project Cycle 

In the initiating cycle-0 of the project, the broad overall project goals and approach were 
worked out and agreed with the specialist group. In the review stage of first cycle, the 
central objective defined was to get a detailed understanding of the state of the art and how 
a knowledge system can advance this. Next, a risk analysis was carried out. It revealed 
the following main risks (see Table 15.9): (1) insufficient acquaintance with the domain 
by the knowledge engineer; (2) complexity of the noise analysis task unknown; (3) limited 
availability of the expert. The first and third risks are very common in knowledge-system 
projects. The second risk, task complexity, resulted from inspection of early knowledge 
elicitation data. It appeared to be ambiguous in the sense that the noise interpretation 
task could be quite simple like a classification task. Alternatively, it might be extremely 
complex as a form of heavy mathematical model-based reasoning, or it might be of in-
termediate complexity as in assessment-type tasks. Different parts of the elicitation data 
could be construed or interpreted to support either position. 

As a result of this risk assessment, in the planning stage a cycle plan has been devel-
oped that incorporates the risk countermeasures listed in Table 15.9. Outputs of the cycle 
are in terms of CommonKADS model components and their states. The resulting plan is 
shown in the form of a Gantt chart in Figure 15.9, and in summary worksheet form in 
Table 15.10. The following activities were defined in the cycle-1 plan: 
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Figure 15.9 
Gantt chart of the plan for the first cycle in the noise-analysis knowledge project. The numbers denote the 
estimated hours of effort for an activity. 

KM-a As a preliminary part of the domain layer of the knowledge model, make a 
glossary of important domain concepts and a first-cut domain-specific ontology 
(cf. Chapter 7). 

OM-a Develop the organization model for the current situation. 

OM-b Develop the organization model for the envisaged new situation, with knowledge 
system introduced. 

TM-a Make a first version of the task model for the existing mathematical signal-
processing software system. 

TM-b Make a first version of the task model for the noise interpretation tasks of the 
expert. 

TM-c Make a first version of the task model for the envisaged knowledge system. 

In the subsequent develop/monitor stage, activities were carried out following the cy-
cle plan. Knowledge acquisition was done by means of an array of different methods, 
including open and structured interviews, think-aloud protocols by the expert, consulting 
other specialists, collecting and studying technical domain literature, and on-the-job train-
ing in the expert group by the knowledge engineer, actually processing measured real-time 
data from a nuclear-power station. This approach was indeed successful to counteract the 
risks mentioned in Table 15.9. A highly interesting conclusion was that reactor-noise inter-
pretation is very close to an assessment type of task. So it could be concluded that, given 
the fact that the task is not overly complex for a knowledge system, further work on the 

TM-c 

8 
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Model State Planning Worksheet PM-2: Cycle 1 Noise-Analysis System 

Attribute Description 
MODEL NAME KM-a: knowledge model 

OM-a/b: organization model 
TM-a/b/c: task model 

STATE VARIABLE KM-a: Domain knowledge (initial domain schema) 
0M-a/b: All organization model components 
TM-a/b/c: Task type and top-level decomposition 

STATE VALUE KM-a: Identified 
OM-a/b: Described 
TM-a/b/c: Identified 

QUALITY METRICS Knowledge capture, evaluated by e.g., teach back to experts and other 
responsible staff 

Table 15.10 
Worksheet PM-2: Cycle 1 planning for the nuclear reactor noise analysis and interpretation system. 

project was warranted. Second, it was concluded that further work could be based on the 
reusable task template discussed in Chapter 6. This turned out to be indeed the case and it 
made things significantly easier later on. 

Even with the flexible but sound planning due to the spiral project management ap-
proach, project monitoring is needed during development (i.e., the fourth quadrant of the 
spiral) because unexpected things might happen along the road. In the noise-analysis 
project, although the activities did follow the cycle plan, the total effort (indicated in Fig-
ure 15.9) appeared to be underestimated. This was mainly due to the time it took to consult 
other experts from outside organizations. The benefit of doing this was, however, that a full 
second case study could be carried out, based on another nuclear reactor of a different type 
and situated at a different location. The results were a clear validation of the conclusion 
that reactor noise interpretation is an assessment type of task. Later on, it turned out to be 
possible to build a single generic task-inference model covering both cases, and based on 
the reusable assessment task template. 

Another interesting experience was that initially the expectations of expert and knowl-
edge engineer differed more than was anticipated, although they had formally agreed on 
project brief and approach beforehand. This became visible in the transcripts of an inter-
view dialogue such as the following: 

Knowledge engineer: (shows noise spectra as in Figure 15.8) — If the reac-
tivity differs from the expected value, is it possible to say what the possible 
causes are? Does it also show up in or affect the values of other physical 
parameters? 

In response, initially the expert tended to find such questions not very relevant for 
developing a knowledge system, and came up with counterquestions such as: 

r, 
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Model State Planning Worksheet PM-2: 
Cycle 2 Noise-Analysis System 

  

Attribute Description 
MODEL NAME OM-c: Organization model 

TM -d: Task model 
STATE VARIABLE OM -c: Resources and problems/opportunities components 

TM -d: Task goal/value, performance/quality, and resources components 
STATE VALUE OM -c: Completed 

TM -d: Described 
QUALITY METRICS Knowledge capture (coverage), knowledge usability (effectiveness), 

functionality (suitability, accuracy); evaluated mainly by differential or 
comparative analysis 

Table 15.11 
Worksheet PM-2: Cycle 2 planning for the nuclear reactor noise analysis and interpretation system. 

Expert: In what language are you going to implement the system? On a VAX 
or a PC? 

This shows — and this is a very general experience, especially in open-ended projects as 
many knowledge projects are — that expectation management with respect to the various 
project parties and stakeholders is a crucial activity. 

15.6.3 Second and Further Project Cycles 

The first project cycle concentrated on task-domain content and complexity, as the main 
risks were perceived to be related to these aspects. Now that these risks were seen to 
be quite well under control, the second cycle of the noise analysis project focused on 
the economic cost-benefit aspects. The reason was that, given the technical feasibility 
established in the first cycle, the main risk was now considered to lie in the danger that the 
initial estimates of the economic feasibility might be overly crude. Thus, the cycle-2 plan 
aimed to cater for this by two activities: OM-c, detailing the organization model especially 
with respect to its problems/opportunities and resources components (see Chapter 3), and 
TM-d, comparing the envisaged system task model with the capabilities and associated 
costs of existing commercial systems on the market (see Table 15.11 and Figure 15.10, 
left). This resulted in a more detailed insight into added value vs. cost of the prospective 
noise knowledge system. 

The results of the second cycle were not unequivocal. A market study done by an 
external company indicated the potential for significant savings on a worldwide basis. It 
was also clear, however, that national interests and political issues related to nuclear energy 
were a complicating factor, difficult to quantify in financial terms. Visits of the knowledge 
engineer to potential end users revealed some, not unexpected, reluctance to change ex-
isting work procedures and habits, as well as some, again not unexpected, differences in 
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Figure 15.10 
Gantt charts of the second (left) and third (right) cycles of the noise-analysis project planning. For an explanation 
of the activities, see the text. 

attitudes between engineers on the work floor and their managers. The comparison with 
existing commercial systems indicated a quite clear ceiling cost of the knowledge system 
of some tens of thousands of dollars (a figure which was estimated to be achievable). Fur-
thermore, gradually it became clear that there was some commercial potential in industrial 
sectors other than nuclear energy, such as the offshore business. Overall, a moderate further 
investment in noise knowledge systems was considered to be justified. 

Next, the third project cycle again focused more on domain-knowledge content: the 
main risk seen was to ensure that the delicate and rather technical aspects of this domain 
could indeed be adequately converted into forms and rules suitable for computer treatment. 
Accordingly, the cycle-3 plan concentrated on filling in the various components of the 
knowledge and design models, as seen in Figure 15.10 (right). Here, the activities defined 
were KM-b: describe the assessment task instances in both cases; KM-c: describe the 
related inference structures; KM-d/e: describe/complete the domain models in the domain 
layer of the knowledge model; DM: identify ensuing architecture, platform, and application 
design decisions (cf. Chapter 11). 

These activities involved some significant technical effort, but did not lead to any un-
expected surprises. As the focus was on domain-knowledge content, a regular contact with 
the noise-analysis expert group was maintained to ensure the quality of the work. From the 
third cycle onward, the project life cycle became rather predictable, and could be more and 
more managed in the waterfall form discussed early in this Chapter. For the implemen-
tation of the noise knowledge system, it appeared that any standard rule-based software 
architecture and environment was suitable, with a characteristic size of several dozens of 
rules for a single application. 
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15.6.4 Reflections and Lessons Learned 

The project case study described above is, we believe, quite typical of many knowledge 
projects. Especially in the initial stages, the project manager has to deal with a lot of un-
known or uncertain factors. Here, not even the task type and complexity of the application 
were really clear in advance. In fact, it was taken into account that review of the first cycle 
could well lead to the recommendation to stop the project, because the task appears too 
complex for an information system. 

These elements of uncertainty present a compelling case for a flexible and configurable 
project management approach, as the proposed CommonKADS version of the risk-based 
spiral model. Even a superficial look at the case study reveals that it leads to a clearly 
nonwaterfall project. In knowledge projects, iterative elements must be built in by design, 
often in the course of the learning process itself. Further testimony to this is to imagine 
what the project plan would have looked like if outcomes of a previous cycle had been 
slightly different (for example, more or less complexity of the task, more or less optimistic 
economic feasibility estimates, etc.). 

The case study also emphasizes the importance of analyzing the business and orga-
nizational aspects of knowledge-system development and introduction. These aspects are 
often underestimated by computer scientists and software engineers, who tend to have 
a bias and preference for the content-related technical aspects. Then, the danger is often 
poor handling of what we have called expectation management of end users and customers. 
Managers, marketers and persons with a background in business administration are often 
more sensitive to these aspects. For them, a common pitfall is often a limited appreciation 
of the technical aspects of a knowledge project. As hinted at in the case study, a reasonable 
technical competence is needed to make adequate economic and marketing forecasts, at 
least in a second, more refined round of the project spiral. 

Sometimes, there can be unanticipated positive surprises. Reactor noise analysis and 
housing application or credit card fraud assessment are obviously very disparate domains 
Nevertheless, it turned out that the assessment task template, originally developed in finan-
cial and policy applications, could be reused in this highly technical noise analysis domain. 
Such a finding is gratifying: something a project team can hope for, strive for, but never 
plan for. It is a showcase for the unexpectedly wide range and potential of generic and 
reusable models we have argued for at several places in this book. It also points to a per-
sonal quality of good knowledge project managers: to be able to surf good project waves 
even if you did not expect them — as if you expected them. 

15.7 How Not to Manage a Knowledge-System Project 

To end this chapter, it would be useful to summarize lessons and guidelines for good project 
management. In contrast, however, it may be even more illuminating and memorable to 
show — based on true stories and many years of practical experience! — what to do as a 
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project manager if you want to head for disaster in your knowledge project. Here, then, are 
some (only some!) of our recipes for failure: 

1. One of the tedious aspects of being a project manager is that you have to balance the 
different, and often conflicting, interests of outside stakeholders such as clients, users, 
experts, and department managers. This is extremely time-consuming and slows down 
the technical progress of your project. So the best strategy is not to waste too much 
time on these stakeholders. Since they usually are ignorant about knowledge systems, 
they are not of much help to you anyway. 

2. Cautious project managers live by so-called 80-20 rules. For example, 80% of the 
system functionality can often be delivered with only 20% of the project budget, while 
the final 20% of functionality consumes the remaining 80% of the budget. Such rules 
are used to argue in favor of modest improvements in the degree of automation. You, 
on the other hand, will of course make the real difference. So, go for the full 100%. If 
you cannot think big, you will never act big. 

3. Knowledge projects are often viewed by outsiders as innovative, sometimes complex 
and risky. This may lead to some resistance. To overcome this, you as a project man-
ager have to sell the project well. Do this by introducing high ambitions and expecta-
tions from all stakeholders right from the start. In this era of business process redesign, 
one must go for quantum leaps of improvement, not limited steps. After all, as a project 
manager you will be remembered only for a big success, not for a number of small ones. 
(The drawback to this strategy is that you may also be remembered for a big mistake.) 

4. The power, image, and position of a project manager within an organization in practice 
depends on the budget he controls. This is why a spiral approach is not adequate: 
the danger is that you get your budget only in portions cycle by cycle, and that each 
time you have to make a case for it based on results. To improve your status in the 
organization, you will be better off by going for one big budget right at the start, based 
on big expectations. 

5. We are happy to include some more real-life recipes for disaster from you ... Of course, 
the above "guidelines" are meant in an ironic way. This helps, we hope, to get the 
message across about careful project management: because situations as indicated here 
are not only Dilbert-like cartoons but regrettably do really happen in projects. 

15.8 Bibliographical Notes and Further Reading 

A classic and still useful text on the economic aspects of the software life cycle and its plan-
ning is Boehm (1981). The spiral life-cycle model was first proposed in Boehm (1988). 
The CommonKADS adaptation of this, including the state-based project management ap-
proach, was developed in the KADS-II project (see the reports at the CommonKADS web-
site). A recent, concise student text on software project management is Ricketts (1998). 
Related risk analysis is extensively treated in Hall (1998). System project management 
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procedures are often a formal element in quality management systems in organizations 
(Peratec 1994). As pointed out in this chapter, the CommonKADS suite of aspect mod-
els constitutes a comprehensive approach to knowledge-oriented requirements engineering 
that includes the upfront stages before system specification. For techniques useful in the 
very early stages, see also Chapter 8 on knowledge elicitation. For knowledge managers 
and related business consultancy, Scott-Morgan (1994) is recommended additional read-
ing. A recent good practice guide on software requirements engineering in general is Som-
merville (1997). The work described in the case study was carried out by Sjaak Kaandorp 
at ECN. 
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Appendix: Knowledge-Model Language 

This appendix contains detailed information about the CommonKADS language for speci-
fying knowledge models. Section A.2 contains a full specification of the knowledge-model 
language using a BNF notation. Section A.3 contains the full knowledge model for the 
housing application (see Chapter 10). 

A.1 Language Conventions 

A.1.1 Syntactic Conventions 

The conventions used in the syntax specification. are listed in Table A.1. 

A.1.2 Low-Level Syntax 

Comments Comments are not formally part of the syntax of CML. Comments follow 
the C style: initiate a comment with / * and terminate with * /. Comments can appear 
anywhere between the symbols of the CML syntax. 

Names The most frequently occurring low-level construct is a name. CML defines a 
name to start with a letter followed by letters, digits, hyphens, and underbars in an arbitrary 
order. If additional characters are required in a name, the entire name must be embedded 
in single quotes. For example, the concept Monster of Loch Ness is defined as follows: 

CONCEPT 'Monster of Loch Ness'; 

END CONCEPT 'Monster of Loch Ness'; 

What a name refers to is suggested by the convention Construct-name, where Construct 
is the type of thing the name denotes. The CML parser will take this rather literally, if the 
parser encounters a Concept-name, it will create a concept of the given name if it did not 
already exist. 
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X ::= Y  The syntax of X (a nonterminal) is defined by Y. 
[ X ] Zero or one occurrence of X. 
X* Zero or more occurrences of X. 
Xi- One or more occurrences of X. 
X Y ... One or more occurrences of X separated by Y. This construct is mainly used to abbreviate 

comma-separated lists. For example, "Name, ..." is short for "Name (, Name )*". 
X I Y One of X or Y (exclusive or). 
( X ) Grouping construct for specifying the scope of operators. 
symbol Bold: predefined terminal symbols of the language. In the syntax definition these symbols 

are given in lowercase. In a CML file they must be given in uppercase. 
Symbol Capitalized: user-defined terminal symbols of the language. 
symbol  Lowercase: nonterminal symbols. 
"Text" Arbitrary text between double quotes. A double quote inside the text can be escaped with 

a backslash. 
`X' Escapes the operator symbol (e.g., *) and denotes the literal X. 

Table A.1 
Conventions for syntax specification. 

Hyphens, underbars, and spaces The ASCII character set has given us two symbols 
that are used interchangeably: the hyphen and the underbar. Some languages allow a 
hyphen in a name (e.g., Lisp), whereas others disallow it (e.g., C). cmi. allows both char-
acters as it is language in which one may want to denote concepts which already have an 
established notation (e.g., hole-in-1). Users of CML are advised to use the notation of a 
concept as it appears in (public) sources. In general, the consequence is to use hyphens 
and spaces rather than underbars. To avoid practical problems when CML is translated into 
other languages, the CML parser has several options through which hyphens and spaces 
can be converted to underbars automatically. 

A.1.3 Operators in Expressions 

Table A.2 lists the operators that can be used in expressions. Note that the operator for 
equality is  (and not =). The main entry point in the syntax for expressions is equation 
(Section A.2.10, p. 417). Operators are listed in order of increasing precedence. Operators 
of equal precedence are grouped between horizontal rules. Note that a hyphen may be used 
in names and is also an operator. White space around hyphens intended as a minus sign 
may thus be necessary. 

CONCEPT vehicle; 
ATTRIBUTES: 

no-of-wheels: INTEGER; 

awe 

 

111111 

AXIOMS: 
no-of-wheels > 3; 
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Operator Description 
= 
: = 

Equivalence (mathematics) 
Assignment (programming) 

V 
V 

A 
I/ \ 

II II 
I I  • 

Less than (comparison) 
Less than or equal to (comparison) 
More than (comparison) 
More than or equal to (comparison) 
Equal to (comparison) 
Not equal to (comparison) 

-> 
<- 
< -> 

Implication (logical) 
Inverse implication (logical) 
Double implication (logical) 

AND 
OR 
XOR 

Conjunction (logical) 
Disjunction (logical) 
Choice (logical) 
Addition (arithmetic) 
Subtraction (arithmetic) 

* 
/ 

Multiplication (arithmetic) 
Division (arithmetic) 

** Exponentiation (arithmetic) 
Negation (arithmetic) 

NOT Negation (logical) 
. Dereference (programming) 

Derivative (mathematics) 
( . . . 
[ • . . 

) 
] 

Grouping 
Subscript 

Table A.2 
List of expression operators. 

A.2 Language Syntax 

A.2.1 Synonyms 

Table Table A.3 lists the synonyms of terms used in the CML syntax specification. The term 
in the left column is used in this document, the term(s) in the right column give synonyms 
used in previous versions of CML and are still accepted by the CML parser. 

A.2.2 Knowledge Model 

knowledge-model ::=  knowledge-model Knowledge-model ; 
[ terminology ] 
domain-knowledge 
inference-knowledge 
task-knowledge 
[ psm-knowledge ] 

end knowledge-model [ Knowledge -model ;] . 
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Term Old version (still valid) 
attributes properties 
domain-schema ontology, domain-knowledge-schema 
knowledge-base domain-model 
knowledge-model expertise-model 
list-of listof, list 
rule-type rule-schema 
set-of setof, set 
specification spec 
use uses, import 
value-specification value-spec 
value-type value-set 

Table A.3 
Synonyms of language terms. 

It is usual for psm knowledge to be defined separately, for example as part of a library of 
PSMs. 

A.2.3 Domain Knowledge 

domain-knowledge domain-knowledge Domain-knowledge ; 
[ terminology ] 
( domain-schema 
ontology-mapping I knowledge-base ) * 

end domain-knowledge [ Domain-knowledge ;] . 

Domain Schema 

A domain-schema is defined through the specification of types or constructs. CML pro-
vides several representational primitives: concept (Section A.2.3, p. 407), relation (Sec-
tion A.2.3, p. 409), and rule-type (Section A.2.3, p. 408). 
The keyword definitions, to introduce the constructs defined in the schema, is no longer 
required. 

domain-schema :: = domain-schema Domain-schema ; 
[ terminology ] 
[ use : use-construct , ; ] 
[ definitions : domain-construct* 

end domain-schema [ Domain-schema ; . 

use-construct ::= Domain-schema 
Construct from Domain-schema . 

domain-construct ::= binary-relation I concept I mathematical-model 
relation I rule-type I value-type . 

• 
111111.7 
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Concept 

The notion of concept is used to represent a class of real or mental objects in the domain 
being studied. The term concept corresponds roughly to the term entity in ER-modelling 
and class in object-oriented approaches. 
Every concept has a name, a unique symbol which can serve as an identifier of the concept, 
possible super concepts (multiple inheritance is allowed). 

concept ::= concept Concept ; 
[ terminology ] 
[ super-type-of : Concept ,  ; 

[ disjoint : yes I no ; ] 
[ complete : yes I no ; ] 1 

[ sub-type-of : Concept , 
[ has-parts : has-part+ ] 
[ part-of : Concept ,  ;] 
[ viewpoints : viewpoint+ ] 
[ attributes ] 
[ axioms ] 

end concept [ Concept ; . 

has-part ::= Concept ; 
[ role ] 
[ cardinality ] . 

viewpoint ::=  dimension : 
Concept ,  ; 
[ disjoint : yes I no ; ] 
[ complete : yes I no ; ] . 

Axioms 

The axioms slot supports the specification of (mathematical) relationships that are defined 
to be true. 

axioms axioms: 
equation ; . 

Examples Consider the definition of a chess-square: 

CONCEPT chess-square; 
ATTRIBUTES: 

rank: INTEGER; 
file: INTEGER; 

AXIOMS: 
1 >= rank >= 8; 
1 >= file >= 8; 

END CONCEPT chess-square; 
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This restricts the value of the rank (column) and file (row) of a chess-square to be between 
1 and 8. 

Attributes 

Most constructs in CML can have attributes. An attribute is a (possibly multi-valued) func-
tion into a value set. A number of value sets are assumed to be predefined, see type-range 
(Section A.2.3, p. 410). The value sets can also be defined by the user, see value-type 
(Section A.2.3, p. 410). The value set of an attribute cannot be another construct, relations 
between constructs have to be modelled as a (binary) relation. 

attributes attributes : attribute+ . 

attribute ::= Attribute : type-range ; 
[ cardinality ] 
[ differentiation-of : Attribute (Concept) );] 
[ default-value : Value ;] . 

Semantics. The cardinality of an attribute defines how many values that particular attribute 
may take. If the cardinality is omitted it is assumed to be precisely one. An attribute can 
be a differentiation of an attribute of a super construct, both the name and value set of the 
attribute can be differentiated. Consider the following example. 

CONCEPT vehicle; 
ATTRIBUTES: 

wheels: INTEGER; 
END CONCEPT vehicle; 

CONCEPT human; 
ATTRIBUTES: 

legs: INTEGER; 
DIFFERENTIATION-OF: wheels(vehicle); 

END CONCEPT human; 

Rule Type 

rule-type 

rule-type-body 

constraint-rule-type 

::= rule-type Rule-type ; 
[ terminology 
rule-type-body 
[ examples : " Text  " ; ] 

end rule-type [ Rule-type ;] 

::= constraint-rule-type implication-rule-type . 

constraint : user-defined-type ; 
[ cardinality ] . 



Appendix 409 

implication-rule-type ::= antecedent : user-defined-type ; 
[ cardinafity ] 

consequent : user-defined-type ; 
[ cardinality ] 

connection-symbol : Name ; . 

Mathematical Model 

mathematical-model ::= mathematical-model Mathematical-model ; 
[ terminology ] 
[ parameters : parameter+ ] 
[ equations : equation-fist ] 

end mathematical-model [ Mathematical-model ; ] . 

parameter ::= Parameter : type-range ; . 

equation-list ::= ( equation model-reference ) + . 

model-reference ::= model Mathematical-model ([ function-arguments ] ) . 

Relation 

The notion of relation is a central construct in modelling a domain. In CML we allow 
various forms of relations to cater for the specific requirements imposed by KBSs. The 
relation construct is used to link any type of objects to each other, including concepts and 
relations. CML supports two types of relation arguments: a single concept; and a set of 
such objects. 

relation Relation ; 
[ terminology ] 
[ sub-type-of : Relation ,  ; ] 
arguments : argument+ 
[ attributes ] 
[ axioms ] 

end relation [ Relation ; ] . 

argument-type ; 
[ role : Role ; ] 
[ cardinality ] . 

domain-construct-type I 
set-of domain-construct-type I 
list-of domain-construct-type . 
built-in-type I user-defined-type . 
object I concept I rule-type I 
relation I binary-relation I 
mathematical-model I value-type . 
Concept I Rule-type I Structure 
Relation I Binary-relation I Mathematical-model . 

relation ::= 

argument ::= 

argument-type ::= 

domain-construct-type ::= 

built-in-type ::= 

user-defined-type ::= 
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Binary Relation 

binary-relation 

relation-type 

Type Range 

::= binary-relation Relation ; 
[ terminology ] 
[ sub-type-of : Relation , ;] 
[ inverse : Relation ;] 
argument-1 : argument 
argument-2 : argument 
[ relation-type ] 
[ attributes ] 
[ axioms ] 

end binary-relation [ Relation ; ] 

::=  transitive I asymmetric I symmetric 
irreflexive I reflexive I antisynunetric 

type-range ::= primitive-type I primitive-range 
Value-type { String-value , ... } . 

primitive-type ::= number I integer I natural I real I image 
string I boolean I universal I date I text . 

primitive-range number-range open-bracket Number , 
max-number close-bracket 

integer-range open-bracket Integer , 
max-integer close-bracket . 

Value Type 

value-type ::= value-type Value-type ; 
[ terminology 
[ type : nominal I ordinal ; ] 
( value-list : { Value ,  } ) 

( value-specification : primitive-type " Text" ) ; 
[ attributes ] 

end value-type [ Value-type ;] • 

A.2.4 Knowledge Base 

knowledge-base ::= knowledge-base Knowledge-base ; 
[ terminology ] 
use : knowledge-base-use ,  ; 
[ [ instances : ( instance I tuple ) + ] 
[ variables : variable-declaration ; ; 
[ expressions : knowledge-base-expression  ; 
[ annotations : " Text " ; ] 
[ attributes ] 

end knowledge-base [ Knowledge-base ;] . 
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knowledge-base-use ::= 

variable-declaration ::= 

knowledge-base- ::= 
expression 

rule-type-expression ::= 

type-operator ::= 

part-operator ::= 

Domain-schema I Rule-type from Domain-schema . 

Variable , : Variable-type ; . 

variable-declaration 

rule-type-instance I 
" Text " . 
equation I 
type-operator rule-type-expression I 
rule-type-expression part-operator rule-type-expression . 
sub-type-of I super-type-of I type-of . 

has-part I dimension I role . 

Instances 

A knowledge base normally contains instances of the constructs defined in a domain 
schema. The constructs for which instances can be defined is listed in the following ta-
ble. 

Domain schema Knowledge base Defines 
concept instance Attribute values and parts 
binary-relation tuple Arguments and attribute values 
relation tuple Arguments and attribute values 

Instances of concepts have a name to uniquely identify them. The names of these instances 
can then be referred to in instances of relations. It is not necessary for names of instance 
to be meaningful at all, they can be arbitrary identifiers. 

instance ::= instance Instance ; 
[ terminology ] 
instance-of : user-defined-type ; 
[ has-parts : 

( Instance ; [role : Role ; 1) + ] 
[ attributes : 

( Attribute : Value ;) + ] 
end instance [ Instance ; . 

tuple ::= tuple 
[ terminology ] 
instance-of : user-defined-type ; 
[ ( argument-1 : Instance ; 

argument-2 : Instance ;) 
( arguments : Instance ,  ;) ] 

[ attributes : 
( Attribute : Value ;) + ] 

end tuple . 
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DOMAIN-SCHEMA tournament-participation; 

CONCEPT player; 
ATTRIBUTES: 

name: STRING; 
nationality: STRING; 

END CONCEPT player; 

CONCEPT tournament; 
ATTRIBUTES: 

city: STRING; 
participants: INTEGER; 
dates: STRING; 
rounds: INTEGER; 

END CONCEPT tournament; 

BINARY-RELATION played-in; 
ARGUMENT-1: 

player; 
ARGUMENT-2: 

tournament; 
ATTRIBUTES: 

score: REAL; 
END BINARY-RELATION played-in; 

END DOMAIN-SCHEMA tournament-participation; 

Figure A.11 
Domain schema for participation in chess tournaments. 

Example A simple domain schema for players who can participate in tournaments is 
shown in Figure A.11. For a particular tournament, for example the first match for the 
chess World Championship, we have the instances shown in Figure A.12. The example 
illustrates that for each instance, obviously, the construct that defines the instances must be 
given (with instance-of). The arguments of a tuple refer to the names of instances. 

A.2.5 Inference Knowledge 

inference-knowledge ::=  inference-knowledge Inference-knowledge ; 
[ terminology ] 
[ use : use-construct , ; 
( inference I 

knowledge-role I 
transfer-function ) * 

end inference-knowledge [ Inference-knowledge ;] . 

I ,PFiltw 
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KNOWLEDGE-BASE 'World Chess Championships'; 
USE: tournament-participation; 

INSTANCE steinitz; 
INSTANCE-OF: player; 
ATTRIBUTES: 

name: 'William Steinitz'; 
nationality: AUT; 

END INSTANCE 

INSTANCE zukertort; 
INSTANCE-OF: player; 
ATTRIBUTES: 

name: 'Johannes Zukertort'; 
nationality: POL; 

END INSTANCE 

INSTANCE 'WCC 01'; 
INSTANCE-OF: tournament; 
ATTRIBUTES: 

city: 'New York, St Louis, New Orleans (USA)'; 
dates: 'January 3 - March 11, 1886'; 
participants: 2; 
rounds: 20; 

END INSTANCE 

TUPLE 
INSTANCE-OF: played-in; 
ARGUMENT-1: steinitz; 
ARGUMENT-2: 'WCC 01'; 
ATTRIBUTES: 

score: 12.5; 
END TUPLE 

TUPLE 
INSTANCE-OF: played-in; 
ARGUMENT-1: zukertort; 
ARGUMENT-2: 'WCC 01'; 
ATTRIBUTES: 

score: 7.5; 
END TUPLE 

END KNOWLEDGE-BASE 'World Chess Championships'; 

Figure A.12 
Example instances in the chess knowledge base. 
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Inference 

inference 

Transfer Function 

transfer-function 

::= inference Inference ; 
[ terminology ] 
[ operation-type : Name ;] 
roles : 

input : Dynamic-knowledge-role ,  ; 
output : Dynamic-knowledge-role ,  ; 
[ static : Static-knowledge-role ,  ;] 

[ specification ] 
end inference [ Inference ;] . 

transfer-function Transfer function ; 
[ terminology ] 
type : ( provide I receive I obtain I present ) 
roles : 

input : Dynamic-knowledge-role ,  ; 
output : Dynamic-knowledge-role ,  ; 

end transfer-function [ Transfer-function ;] . 

Knowledge Role 

knowledge-role :: =  knowledge-role Knowledge-role ; 
[ terminology ] 
type : static I dynamic ; 
domain-mapping : 

( dynamic-domain-reference 
static-domain-reference ) ; 

end knowledge-role [ Knowledge-role ;] . 

dynamic-domain- :: =  domain-construct-type I 
reference 

set-of domain-construct-type 
list-of domain-construct-type . 

static-domain-reference :: =  domain-construct-type from Knowledge-base . 

A.2.6 Task Knowledge 

task-knowledge ::= task-knowledge Task-knowledge ; 
[ terminology ] 
[ use : Inference-knowledge ; 
task-element* 

end task-knowledge [ Task-knowledge ;] . 
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Task 

task ::=  task Task 
[ terminology ] 
[ domain-name : Domain ; ] 
[ goal : " Text " ;] 
roles : 

input : role-description+ 
output : role-description+ 

[ specification : " Text" ;] 
end task [ Task ;] . 

role-description ::= Task-mle : " Text " ; . 

Task Method 

The decomposition of a task method allows the specification of a function if it is not known 
whether the decomposition is an inference or a tasks. This facilitates the construction of 
flexible libraries. 

task-method ::=  task-method Task-method ; 
[ realizes : Task ;] 
task-decomposition 
[ roles : intermediate : role-description+ ] 
control-structure : control-structure 
[ assumptions : " Text " ;] 

end task-method [ Task -method ;] . 

A.2.7 Control Structure 

control-structure ::= 

pseudo-code ::= 

statement ::= 

function-call ::= 

function ::= 

proc-input ::= 

proc-output ::= 

control-loop ::= 

pseudo-code . 

statement+ I ( { pseudo-code } ) . 

function-call ; 
control-loop I 
conditional-statement 
role-operation I 
" Text " ; 

function ( [ proc-input ] [ ' - > ' proc-output ) ; . 

Task I Inference I transfer-function . 

Role ' + ' . 

Role ' + ' . 

( repeat pseudo-code until control-condition ; 
end repeat ) 

( while control-condition do pseudo-code end while ) 
( for-each Role in Role do pseudo-code end for-each ) . 
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control-condition 

role-operation ::= 

role-expression ::= 

binary-role-operator ::= 

unary-role-operator ::= 

= ( has-solution function-call ) 
( new-solution function-call ) 
( empty Role ) 
( control-condition and control-condition ) 
( control-condition or control-condition ) 
( control-condition xor control-condition ) 
( not control-condition ) 
( size Role comparison-operator Integer ) 
( Role comparison-operator Value ) I 
( (control-condition ) ) 
" Text" 

Role ' : = ' role-expression ; . 
Role 
( unary-role-operator role-expression ) 
( role-expression binary-role-operator role-expression ) . 
add I delete I subtract . 

member I select I select-random . 

A.2.8 Problem-Solving Methods 

Problem-solving methods (PSMs) are generalized task methods (see Chapter 13). PSM 
descriptions are usually not part of a specific knowledge model of an application, but are 
placed in a separate library to be used by application developers. The corresponding lan-
guage definitions are included here for completeness. 

psm-knowledge 

psm 

::= psm-knowledge Psm-knowledge 
[ terminology 
psm-description* 

end psm-knowledge [ Psm-knowledge ;] . 

:: =  psm Psm ; 
[ terminology ] 
[ can-realize : problem-type ,  ; ] 
decomposition : 

functions : Function ,  ; 
roles : 

input : role-description+ 
output : role-description+ 
intermediate : role-description+ 

control-structure : control-structure 
[ competence : " Text " ;] 
[ assumptions : "Text " ;] 
[ pragmatic-concerns : " Text " ;] 
[cost: "Text" ;[ 
[ utility : " Text" ;] 
[ communication-protocol : "Text " ;[ 

end psm [ Psm ;] . 
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problem-type ::=  assessment I assignment I classification 
configuration I design I diagnosis 
modelling I monitoring I planning I 
prediction I scheduling I " Text" . 

A.2.9 Ontology Mapping 

Note An elaborate description of ontology mappings is the subject of further research. 
ontology-mapping ::=  ontology-mapping Ontology-mapping ; 

[ terminology ] 
from : Domain-schema ; 
to : Domain-schema ; 
mappings : " Text" 

end ontology-mapping [ Ontology-mapping ;] . 

A.2.10 Equations 

The equation syntax is adopted from NMF (Neutral Model Format). NMF is an emerging 
standard for the definition of mathematical models. The basic entry point is equation 
(Section A.2.10, p. 417). A description of the operators and their precedence is given in 
operator-precedence (Section A.1.3, p. 404). 

Equation 

equation ::= ' ( ' equation ') ' 
sign-operator equation 
negation-operator equation I 
equation arithmetic-operator equation 
equation logical-operator equation I 
equation comparison-operator equation I 
equation dereference-operator equation I 
equation equation-operator equation I 
unsigned-constant I 
vauable-expression 
function-expression 
conditional-expression . 
Variable [ derivative [ subscripts ] . 

' [ ' equation , '  ' . 

Unsigned-integer I Unsigned-real " T ext " 

Function ( equation ,  ) . 
if equation then 

equation 
[ else equation ] 

end if . 

variable-expression ::= 

subscripts ::= 

unsigned-constant ::= 

function-expression ::= 
conditional-expression ::= 
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Operators 

equation 
equivalence-operator 

assignment-operator 

sign-operator 

negation-operator 

:: = 

:: = 

:: = 

::= 

' = ' . 

' + ' ' - ' . 

not . 

arithmetic-operator 

logical-operator 

:: = 

:: = 
* 

and or xor . 
I ** • 

implication-operator 

dereference-operator 

::= 

::= 
<- • 

comparison-operator 

derivative-operator 

::= 

:: = 
< 

' ' ' . 
>.= == 1  = 

A.2.11 Support 

Cardinality 

cardinality cardinality : cardinality-spec ; . 

cardinality-spec :: = any 
Natural 
Natural " + " 
Natural " - " Natural . 

Role 

role ::= role : Role ; . 

Terminology 

terminology ::= [ description : " Text" ; ] 
[ sources : " Text" ; ] 
[ synonyms : Name ,  ;] 
[ translation : Name ,  ; . 

A construct can be annotated with a textual description and sources (textbook, dictionary) 
as well as with a list of synonyms and translations. 
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A.3 Full Knowledge Model for the Housing Application 

KNOWLEDGE-MODEL Housing; 

/* Knowledge model for the assessment task in the housing case study. 
See for more information Chapter 10. 

AUTHOR: Guus Schreiber, UvA 
LAST MODIFIED: 25 May 1998 

DOMAIN-KNOWLEDGE residence-domain; 

DOMAIN-SCHEMA assessment-schema; 

CONCEPT residence; 
DESCRIPTION: 

"A description of a residence in the database of the 
distribution system"; 

ATTRIBUTES: 
number: NATURAL; 
category: {starter-residence, follow-up-residence}; 
build-type: {house, apartment}; 
street-address: STRING; 
city: STRING; 
num-rooms: NATURAL; 
rent: REAL; 
min-num-inhabitants: NATURAL; 
max-num-inhabitants: NATURAL; 
subsidy-type: subsidy-type-value; 
surface-in-square-meters: NATURAL; 
floor: NATURAL; 
lift-available: BOOLEAN; 

AXIOMS: 
min-num-inhabitants <= max-num-inhabitants; 

END CONCEPT residence; 

VALUE-TYPE subsidy-type-value; 
TYPE: NOMINAL; 
VALUE-LIST: {subsidizable, free-sector}; 

END VALUE-TYPE subsidy-type-value; 

CONCEPT applicant; 
DESCRIPTION: 

"A person or group of persons (household) registered as 
potential applicants for a residence"; 

ATTRIBUTES: 
registration-number: STRING; 
applicant-type: {starter, existing-resident}; 
name: STRING; 
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street-address: STRING; 
city: STRING; 
birth-date: STRING; 
age: NATURAL; 
age-category: age-category-value; 
gross-yearly-income: NATURAL; 
household-size: NATURAL; 
household-type: household-type-value; 

AXIOMS: 
applicant.age = FLOOR(TODAY() - applicant.birth-date); 

END CONCEPT applicant; 

VALUE-TYPE age-category-value; 
TYPE: ORDINAL; 
VALUE-LIST: {'upto 22', '23-64', '65+'); 

END VALUE-TYPE age-category-value; 

VALUE-TYPE household-type-value; 
TYPE: NOMINAL; 
VALUE-LIST: {single-person, multi-person); 

END VALUE-TYPE household-type-value; 

BINARY-RELATION residence-application; 
DESCRIPTION: 

"Application of an applicant for a certain residence. 
ARGUMENT-1: applicant; 

CARDINALITY: 0+; 
ARGUMENT-2: residence; 

CARDINALITY: 0-2; 
ATTRIBUTES: 

application-date: DATE; 
END BINARY-RELATION residence-application; 

/* assessment knowledge types */ 

RULE-TYPE residence-abstraction; 
ANTECEDENT: 

residence-application; 
CARDINALITY: 1+; 

CONSEQUENT: 
residence-application; 

CARDINALITY: 1; 
CONNECTION-SYMBOL: 

has-abstraction; 
END RULE-TYPE residence--abstraction; 

CONCEPT residence-criterion; 
ATTRIBUTES: 

truth-value: BOOLEAN; 
END CONCEPT residence-criterion; 
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CONCEPT correct-household-size; 
SUB-TYPE-OF: residence-criterion; 

END CONCEPT correct-household-size; 

CONCEPT correct-residence-type; 
SUB -TYPE -OF: residence -criterion; 

END CONCEPT correct-residence-type; 

CONCEPT residence-specific-constraints; 
SUB-TYPE-OF: residence-criterion; 

END CONCEPT residence-specific-constraints; 

CONCEPT rent-fits-income; 
SUB-TYPE-OF: residence-criterion; 

END CONCEPT rent-fits-income; 

RULE-TYPE residence-requirement; 
ANTECEDENT: 

residence-application; 
CARDINALITY: 1+; 

CONSEQUENT: 
residence-criterion; 

CARDINALITY: 1; 
CONNECTION-SYMBOL: 

indicates; 
END RULE-TYPE residence-requirement; 

CONCEPT residence-decision; 
ATTRIBUTES: 

value: {eligible, not-eligible}; 
END CONCEPT residence-decision; 

RULE-TYPE residence-decision-rule; 
ANTECEDENT: 

residence-criterion; 
CONSEQUENT: 

residence-decision; 
CONNECTION-SYMBOL: 

implies; 
END RULE-TYPE residence-decision-rule; 

END DOMAIN-SCHEMA assessment-schema; 

KNOWLEDGE-BASE system-description; 
USES: 

residence-abstraction FROM assessment-schema; 
EXPRESSIONS: 

/* Abstraction rules */ 

applicant.age < 23 
HAS-ABSTRACTION 
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applicant.age-category = 'upto 22'; 

applicant.age >= 23 AND 
applicant.age < 65 

HAS-ABSTRACTION 
applicant.age-category - '23-64'; 

applicant.age >= 65 
HAS-ABSTRACTION 

applicant.age-category = '65+'; 

applicant.household-size = 1 
HAS-ABSTRACTION 

applicant.household-type = single-person; 

applicant.household-size > 1 
HAS-ABSTRACTION 

applicant.household-type = multi-person; 
END KNOWLEDGE-BASE system-description; 

KNOWLEDGE-BASE measurement-system; 
USES: 

residence-requirement FROM assessment-schema, 
residence-decision-rule FROM assessment-schema; 

EXPRESSIONS: 
/* Requirements */ 

/* correct residence category? */ 

residence.description.subsidy-type = free-sector 
INDICATES 

correct-residence-category.truth-value = true; 

residence.category = starter-residence AND 
applicant.sub-type = starter 

INDICATES 
correct-residence-category. truth-value = true; 

residence.category = follow-up-residence AND 
applicant.sub-type = existing-resident 

INDICATES 
correct-residence-category.truth-value = true; 

/* correct household size? */ 

residence.description.min-num-inhabitants <= 
applicant. household-size 
AND 
residence.description.max-num-inhabitants >= 
applicant.household-size 

INDICATES 

, 
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correct-household-size.truth-value = true; 

/* rent fits income 
free sector residence */ 

applicant.gross-yearly-income >= 70000 AND 
residence.description.rent > 1007 

INDICATES 
rent-fits-income.truth-value = true; 

/* rent fits income 
single-person upto 22 */ 

applicant.household-type = single-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income < 27000 AND 
residence.description.rent < 524 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income >= 27000 AND 
applicant.gross-yearly-income < 35000 AND 
residence.description.rent < 1007 

INDICATES 
rent-fits-income. truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income >= 35000 AND 
applicant.gross-yearly-income < 45000 AND 
residence.description.rent >= 600 

INDICATES 
rent-fits-income. truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income >= 45000 AND 
applicant.gross-yearly-income < 70000 AND 
residence.description.rent >= 810 

INDICATES 
rent-fits-income.truth-value = true; 

/* rent fits income 
multi-person upto 22 */ 

applicant.household-type = multi-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income < 38000 AND 
residence.description.rent < 524 
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INDICATES 
rent-fits-income. truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income >= 38000 AND 
applicant.gross-yearly-income < 46000 AND 
residence.description.rent < 1007 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income >= 46000 AND 
applicant.gross-yearly-income < 56000 AND 
residence.description.rent >= 600 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = 'upto 22' AND 
applicant.gross-yearly-income >= 56000 AND 
applicant.gross-yearly-income < 70000 AND 
residence.description.rent >= 810 

INDICATES 
rent-fits-income. truth-value = true; 

/* rent fits income 
single-person 23-64 */ 

applicant.household-type = single-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income < 25000 AND 
residence.description.rent < 679 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income >= 25000 AND 
applicant.gross-yearly-income < 35000 AND 
residence.description.rent < 1007 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income >= 35000 AND 
applicant.gross-yearly-income < 45000 AND 
residence.description.rent >= 600 

INDICATES 
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rent-fits-income.truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income >= 45000 AND 
applicant.gross-yearly-income < 70000 AND 
residence.description.rent >= 810 

INDICATES 
rent-fits-income.truth-value = true; 

/* rent fits income 
multi-person 23-64 */ 

applicant.household-type = multi-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income < 34000 AND 
residence.description.rent < 679 

INDICATES 
rent-fits-income. truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income >= 24000 AND 
applicant.gross-yearly-income < 46000 AND 
residence.description.rent < 1007 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income >= 46000 AND 
applicant.gross-yearly-income < 56000 AND 
residence.description.rent >= 600 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = '23-64' AND 
applicant.gross-yearly-income >= 56000 AND 
applicant.gross-yearly-income < 70000 AND 
residence.description.rent >= 810 

INDICATES 
rent-fits-income.truth-value = true; 

/* rent fits income 
single-person 65+ */ 

applicant.household-type = single-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-income < 25000 AND 
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residence.description.rent < 679 
INDICATES 

rent-fits-income.truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-income >= 25000 AND 
applicant.gross-yearly-income < 29000 AND 
residence.description.rent < 1007 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = single-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-income >= 29000 AND 
applicant.gross-yearly-income < 45000 AND 
residence.description.rent >= 600 

INDICATES 
rent-fits-income.truLh-value = true; 

applicant.household-type = single-person AND 
applicant.age-category '65+' AND 
applicant.gross-yearly-income >= 45000 AND 
applicant.gross-yearly-income < 70000 AND 
residence.description.rent >= 810 

INDICATES 
rent-fits-income.truth-value = true; 

/* rent fits income 
multi-person 65+ */ 

applicant.household-type = multi-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-income < 31000 AND 
residence.description.rent < 679 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-income >= 31000 AND 
applicant.gross-yearly-income < 39000 AND 
residence.description.rent < 1007 

INDICATES 
rent-fits-income.truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-:income >= 39000 AND 
applicant.gross-yearly-income < 56000 AND 
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residence.description.rent >= 600 
INDICATES 

rent-fits-income. truth-value = true; 

applicant.household-type = multi-person AND 
applicant.age-category = '65+' AND 
applicant.gross-yearly-income >= 56000 AND 
applicant.gross-yearly-income < 70000 AND 
residence.description.rent >= 810 

INDICATES 
rent-fits-income. truth-value = true; 

/* decision rules */ 

correct-residence-category.truth-value = true AND 
correct-household-size.truth-value = true AND 
rent-fits-income.truth-value = true AND 
residence-specific-constraints.truth-value = true 

IMPLIES 
residence-decision.value = eligible; 

correct-residence-category.truth-value = false 
IMPLIES 

residence-decision.value = not-eligible; 

correct-household-size.truth-value = false 
IMPLIES 

residence-decision.value = not-eligible; 

rent-fits-income. truth-value = false 
IMPLIES 

residence-decision.value = not-eligible; 

residence-specific-constraints.truth-value = false 
IMPLIES 

residence-decision.value = not-eligible; 
END KNOWLEDGE-BASE measurement-system; 

END DOMAIN-KNOWLEDGE 

INFERENCE-KNOWLEDGE assessment-inferences; 

KNOWLEDGE-ROLE case-description; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-application; 
END KNOWLEDGE-ROLE case -description; 

KNOWLEDGE-ROLE case-specific-requirements; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 
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SET-OF residence-requirement; 
END KNOWLEDGE-ROLE case-specific-requirements; 

KNOWLEDGE-ROLE decision; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-decision; 
END KNOWLEDGE-ROLE decision; 

KNOWLEDGE-ROLE abstracted-case; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-application; 
END KNOWLEDGE-ROLE abstracted-case; 

KNOWLEDGE-ROLE norm; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-criterion; 
END KNOWLEDGE-ROLE norm; 

KNOWLEDGE-ROLE norm-value; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

residence-criterion; 
END KNOWLEDGE-ROLE norm-value; 

KNOWLEDGE-ROLE norms; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

SET-OF residence-criterion; 
END KNOWLEDGE-ROLE norms; 

KNOWLEDGE-ROLE evaluation-results; 
TYPE: DYNAMIC; 
DOMAIN-MAPPING: 

SET-OF residence-criterion; 
END KNOWLEDGE-ROLE evaluation-results; 

KNOWLEDGE-ROLE abstraction-knowledge; 
TYPE: STATIC; 
DOMAIN-MAPPING: 

residence-abstraction FROM system-description; 
END KNOWLEDGE-ROLE abstraction-knowledge; 

KNOWLEDGE-ROLE norm-set; 
TYPE: STATIC; 
DOMAIN-MAPPING: 

residence-criterion FROM measurement-system; 
END KNOWLEDGE-ROLE norm-set; 
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KNOWLEDGE-ROLE requirements; 
TYPE: STATIC; 
DOMAIN-MAPPING: 

residence-requirement FROM measurement-system; 
END KNOWLEDGE-ROLE requirements; 

KNOWLEDGE-ROLE decision-knowledge; 
TYPE: STATIC; 
DOMAIN-MAPPING: 

residence-decision-rule FROM measurement-system; 
END KNOWLEDGE-ROLE decision-knowledge; 

INFERENCE abstract; 
ROLES: 

INPUT: 
case-description; 

OUTPUT: 
abstracted-case; 

STATIC: 
abstraction-knowledge; 

SPECIFICATION: " 
Input is a set of case data. Output is the same set of data 
extended with an abstracted feature that can be derived 
from the data using the corpus of abstraction knowledge."; 

END INFERENCE abstract; 

INFERENCE specify; 
OPERATION-TYPE: lookup; 
ROLES: 

INPUT: 
abstracted-case; 

OUTPUT: 
norms; 

STATIC: 
norm-set; 

SPECIFICATION: 
This inference is just a simple look-up of the norms"; 

END INFERENCE specify; 

INFERENCE select; 
ROLES: 

INPUT: 
norms; 

OUTPUT: 
norm; 

SPECIFICATION: 
"No domain knowledge is used in norm selection: the 
section is a random one."; 

END INFERENCE select; 

INFERENCE evaluate; 
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ROLES: 
INPUT: 

norm, 
abstracted-case, 
case-specific-requirements; 

OUTPUT: 
norm-value; 

STATIC: 
requirements; 

SPECIFICATION: " 
Establish the truth value of the input norm for the given 
case description. The underlying domain knowledge is 
formed by both the requirements in the knowl- 

edge base as 
well as additional case-specific requirements, that are 
part of the input."; 

END INFERENCE evaluate; 

INFERENCE match; 
ROLES: 

INPUT: 
evaluation-results; 

OUTPUT: 
decision; 

STATIC: 
decision-knowledge; 

SPECIFICATION: ' 
See whether the available evaluation results enable a 
decision to be taken. The inference fails if this is 
not the case.'; 

END INFERENCE match; 

END INFERENCE-KNOWLEDGE 

/* Tasks */ 

TASK-KNOWLEDGE assessment-tasks; 

TASK assess-case; 
DOMAIN-NAME: asses-residence-application; 
GOAL: " 

Assess whether an application for a residence by a certain 
applicant satisfies the criteria."; 

ROLES: 
INPUT: 
case-description: Data about an applicant and a residence"; 
case-specific-requirements: "Residence-specific criteria"; 

OUTPUT: 
decision: "eligible or not-eligible for a residence"; 

END TASK assess-case; 
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TASK-METHOD assess-through-abstract-and-match; 
REALIZES: 

assess-case; 
DECOMPOSITION: 

TASKS: abstract-case, match-case; 
ROLES: 

INTERMEDIATE: 
abstracted-case: "Original case plus abstractions"; 

CONTROL-STRUCTURE: 
abstract-case(case-description -> abstracted-case); 
match-case(abstracted-case + case-specific-requirements 

-> decision); 
END TASK-METHOD assess-through-abstract-and-match; 

TASK abstract-case; 
DOMAIN-NAME: abstract-applicant-data; 
GOAL: 

"Add case abstractions to the case description"; 
ROLES: 

INPUT: 
case-description: "The 'raw' case data"; 

OUTPUT: 
abstracted-case: "The raw data plus the abstractions"; 

END TASK abstract-case; 

TASK-METHOD abstract-method; 
REALIZES: 

abstract-case; 
DECOMPOSITION: 

INFERENCES: abstract; 
CONTROL-STRUCTURE: 

WHILE HAS-SOLUTION abstract(case-description 
-> abstracted-case) DO 

/* use the abstracted case as the input in invocation of 
the next abstraction inference */ 
case-description := abstracted-case; 

END WHILE 
END TASK-METHOD abstract-method; 

TASK match-case; 
DOMAIN-NAME: match-residence-application; 
GOAL: " 

Apply the norms to the case to find out whether it satisfies 
the criteria."; 

ROLES: 
INPUT: 
abstracted-case: "Case description plus the abstractions"; 
case-specific-requirements: "Criteria specific for a 

certain residence."; 
OUTPUT: 
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decision: "Eligible or not eligible"; 
END TASK match-case; 

TASK-METHOD match-method; 
REALIZES: 

match-case; 
DECOMPOSITION: 

INFERENCES: specify, select, evaluate, match; 
ROLES: 

INTERMEDIATE: 
norms: "The full set of assessment norms"; 
norm: "A single assessment norm"; 
norm-value: "Truth value of a norm for this case"; 
evaluation-results: "List of norm together with 

their truth values"; 
CONTROL-STRUCTURE: 

specify(abstracted-case -> norms); 
REPEAT 

select(norms -> norm); 
evaluate(abstracted-case + case-specific-requirements 

+ norm -> norm-value); 
evaluation-results := norm-value ADD evaluation-results; 

UNTIL 
HAS-SOLUTION match(evaluation-results -> decision); 

END REPEAT 
END TASK-METHOD match-method; 

END TASK-KNOWLEDGE 

END KNOWLEDGE-MODEL housing; 
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UML Class Diagram 
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UML State Diagram 
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